» Articles » PMID: 25282355

Exploiting CRISPR-Cas Nucleases to Produce Sequence-specific Antimicrobials

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2014 Oct 6
PMID 25282355
Citations 377
Authors
Affiliations
Soon will be listed here.
Abstract

Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

Citing Articles

in Inflammation and Pain: Update on Pathologic Mechanisms.

Rasquel-Oliveira F, Ribeiro J, Martelossi-Cebinelli G, Costa F, Nakazato G, Casagrande R Pathogens. 2025; 14(2).

PMID: 40005560 PMC: 11858194. DOI: 10.3390/pathogens14020185.


Structural characteristics, functions, and counteracting strategies of biofilms in .

Xia Y, Hu Z, Jin Q, Chen Q, Zhao C, Qiang R Comput Struct Biotechnol J. 2025; 27:488-500.

PMID: 39916696 PMC: 11799891. DOI: 10.1016/j.csbj.2025.01.021.


New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14.

Ali Agha A, Al-Samydai A, Aburjai T Heliyon. 2025; 11(2):e42013.

PMID: 39906792 PMC: 11791237. DOI: 10.1016/j.heliyon.2025.e42013.


Developing a Versatile Arsenal: Novel Antimicrobials as Offensive Tools Against Pathogenic Bacteria.

Ma J, Lu Z Microorganisms. 2025; 13(1).

PMID: 39858940 PMC: 11767912. DOI: 10.3390/microorganisms13010172.


Microbes Saving Lives and Reducing Suffering.

Timmis K, Karahan Z, Ramos J, Koren O, Perez-Cobas A, Steward K Microb Biotechnol. 2025; 18(1):e70068.

PMID: 39844583 PMC: 11754571. DOI: 10.1111/1751-7915.70068.


References
1.
Ubukata K, Nonoguchi R, Matsuhashi M, Konno M . Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J Bacteriol. 1989; 171(5):2882-5. PMC: 209980. DOI: 10.1128/jb.171.5.2882-2885.1989. View

2.
Goldberg G, Jiang W, Bikard D, Marraffini L . Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature. 2014; 514(7524):633-7. PMC: 4214910. DOI: 10.1038/nature13637. View

3.
Kreiswirth B, Lofdahl S, Betley M, OReilly M, Schlievert P, Bergdoll M . The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature. 1983; 305(5936):709-12. DOI: 10.1038/305709a0. View

4.
Jiang W, Bikard D, Cox D, Zhang F, Marraffini L . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013; 31(3):233-9. PMC: 3748948. DOI: 10.1038/nbt.2508. View

5.
McDougal L, Steward C, Killgore G, Chaitram J, McAllister S, Tenover F . Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003; 41(11):5113-20. PMC: 262524. DOI: 10.1128/JCM.41.11.5113-5120.2003. View