» Articles » PMID: 25183829

Origin and Evolution of the Self-organizing Cytoskeleton in the Network of Eukaryotic Organelles

Overview
Date 2014 Sep 4
PMID 25183829
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.

Citing Articles

Salactin, a dynamically unstable actin homolog in Haloarchaea.

Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody E mBio. 2023; 14(6):e0227223.

PMID: 37966230 PMC: 10746226. DOI: 10.1128/mbio.02272-23.


Ancient Origins of Cytoskeletal Crosstalk: Spectraplakin-like Proteins Precede the Emergence of Cortical Microtubule Stabilization Complexes as Crosslinkers.

Paradzik T, Podgorski I, Vojvoda Zeljko T, Paradzik M Int J Mol Sci. 2022; 23(10).

PMID: 35628404 PMC: 9145010. DOI: 10.3390/ijms23105594.


Novel Cytoskeleton-Associated Proteins in Are Essential for Cell Morphogenesis and Cytokinesis.

Schock M, Schmidt S, Ersfeld K Microorganisms. 2021; 9(11).

PMID: 34835360 PMC: 8625193. DOI: 10.3390/microorganisms9112234.


A Model for Primary Cilium Biogenesis by Polarized Epithelial Cells: Role of the Midbody Remnant and Associated Specialized Membranes.

Labat-de-Hoz L, Rubio-Ramos A, Casares-Arias J, Bernabe-Rubio M, Correas I, Alonso M Front Cell Dev Biol. 2021; 8:622918.

PMID: 33585461 PMC: 7873843. DOI: 10.3389/fcell.2020.622918.


Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes.

Garge R, Laurent J, Kachroo A, Marcotte E Genetics. 2020; 215(4):1153-1169.

PMID: 32522745 PMC: 7404242. DOI: 10.1534/genetics.120.303378.


References
1.
Vale R, Milligan R . The way things move: looking under the hood of molecular motor proteins. Science. 2001; 288(5463):88-95. DOI: 10.1126/science.288.5463.88. View

2.
Popp D, Iwasa M, Erickson H, Narita A, Maeda Y, Robinson R . Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem. 2010; 285(15):11281-9. PMC: 2857006. DOI: 10.1074/jbc.M109.084079. View

3.
Garner E, Bernard R, Wang W, Zhuang X, Rudner D, Mitchison T . Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science. 2011; 333(6039):222-5. PMC: 3235694. DOI: 10.1126/science.1203285. View

4.
Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Sogaard-Andersen L . Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J. 2010; 29(14):2276-89. PMC: 2910265. DOI: 10.1038/emboj.2010.114. View

5.
Popp D, Narita A, Ghoshdastider U, Maeda K, Maeda Y, Oda T . Polymeric structures and dynamic properties of the bacterial actin AlfA. J Mol Biol. 2010; 397(4):1031-41. DOI: 10.1016/j.jmb.2010.02.010. View