» Articles » PMID: 19602153

Phylogenetic Analysis Identifies Many Uncharacterized Actin-like Proteins (Alps) in Bacteria: Regulated Polymerization, Dynamic Instability and Treadmilling in Alp7A

Overview
Journal Mol Microbiol
Date 2009 Jul 16
PMID 19602153
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.

Citing Articles

Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.

Petek-Seoane N, Rodriguez J, Derman A, Royal S, Lord S, Lawrence R Mol Biol Cell. 2024; 35(11):ar145.

PMID: 39320937 PMC: 11617094. DOI: 10.1091/mbc.E23-11-0440.


Archaeal actins and the origin of a multi-functional cytoskeleton.

Charles-Orszag A, Petek-Seoane N, Mullins R J Bacteriol. 2024; 206(3):e0034823.

PMID: 38391233 PMC: 10955848. DOI: 10.1128/jb.00348-23.


Salactin, a dynamically unstable actin homolog in Haloarchaea.

Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody E mBio. 2023; 14(6):e0227223.

PMID: 37966230 PMC: 10746226. DOI: 10.1128/mbio.02272-23.


Indications for a genetic basis for big bacteria and description of the giant cable bacterium Electrothrix gigas sp. nov.

Geelhoed J, Thorup C, Bjerg J, Schreiber L, Nielsen L, Schramm A Microbiol Spectr. 2023; :e0053823.

PMID: 37732806 PMC: 10580974. DOI: 10.1128/spectrum.00538-23.


Construction of an Antibiotic-Free Vector and its Application in the Metabolic Engineering of for Polyhydroxybutyrate Production.

Liao Y, Saengsawang B, Chen J, Zhuo X, Li S Front Bioeng Biotechnol. 2022; 10:837944.

PMID: 35721860 PMC: 9204107. DOI: 10.3389/fbioe.2022.837944.


References
1.
Dayel M, Holleran E, Mullins R . Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc Natl Acad Sci U S A. 2001; 98(26):14871-6. PMC: 64951. DOI: 10.1073/pnas.261419298. View

2.
Tanaka T, Koshikawa T . Isolation and characterization of four types of plasmids from Bacillus subtilis (natto). J Bacteriol. 1977; 131(2):699-701. PMC: 235484. DOI: 10.1128/jb.131.2.699-701.1977. View

3.
Rygus T, Hillen W . Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl Microbiol Biotechnol. 1991; 35(5):594-9. DOI: 10.1007/BF00169622. View

4.
Bork P, Sander C, Valencia A . An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A. 1992; 89(16):7290-4. PMC: 49695. DOI: 10.1073/pnas.89.16.7290. View

5.
Pogliano J . The bacterial cytoskeleton. Curr Opin Cell Biol. 2008; 20(1):19-27. DOI: 10.1016/j.ceb.2007.12.006. View