» Articles » PMID: 25103560

Argonaute CLIP-Seq Reveals MiRNA Targetome Diversity Across Tissue Types

Overview
Journal Sci Rep
Specialty Science
Date 2014 Aug 9
PMID 25103560
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

To date, analyses of individual targets have provided evidence of a miRNA targetome that extends beyond the boundaries of messenger RNAs (mRNAs) and can involve non-Watson-Crick base pairing in the miRNA seed region. Here we report our findings from analyzing 34 Argonaute HITS-CLIP datasets from several human and mouse cell types. Investigation of the architectural (i.e. bulge vs. contiguous pairs) and sequence (Watson-Crick vs. G:U pairs) preferences for human and mouse miRNAs revealed that many heteroduplexes are "non-canonical" i.e. their seed region comprises G:U and bulge combinations. The genomic distribution of miRNA targets differed distinctly across cell types but remained congruent across biological replicates of the same cell type. For some cell types intergenic and intronic targets were more frequent whereas in other cell types mRNA targets prevailed. The findings suggest an expanded model of miRNA targeting that is more frequent than the standard model currently in use. Lastly, our analyses of data from different cell types and laboratories revealed consistent Ago-loaded miRNA profiles across replicates whereas, unexpectedly, the Ago-loaded targets exhibited a much more dynamic behavior across biological replicates.

Citing Articles

Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder.

Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard J, Voloudakis G bioRxiv. 2025; .

PMID: 39763727 PMC: 11703252. DOI: 10.1101/2024.12.24.630254.


The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type.

Cherlin T, Jing Y, Shah S, Kennedy A, Telonis A, Pliatsika V BMC Biol. 2024; 22(1):205.

PMID: 39267057 PMC: 11397057. DOI: 10.1186/s12915-024-01970-6.


Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues.

Wagner V, Kern F, Hahn O, Schaum N, Ludwig N, Fehlmann T Nat Biotechnol. 2023; 42(1):109-118.

PMID: 37106037 PMC: 10791587. DOI: 10.1038/s41587-023-01751-6.


Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction.

Gresova K, Vaculik O, Alexiou P Biology (Basel). 2023; 12(3).

PMID: 36979061 PMC: 10045089. DOI: 10.3390/biology12030369.


Circr, a Computational Tool to Identify miRNA:circRNA Associations.

Dori M, Caroli J, Forcato M Front Bioinform. 2022; 2:852834.

PMID: 36304313 PMC: 9580875. DOI: 10.3389/fbinf.2022.852834.


References
1.
Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M . miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci U S A. 2008; 105(51):20297-302. PMC: 2629338. DOI: 10.1073/pnas.0809376106. View

2.
Ziu M, Fletcher L, Savage J, Jimenez D, Digicaylioglu M, Bartanusz V . Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression. Spine J. 2013; 14(2):353-60. DOI: 10.1016/j.spinee.2013.08.015. View

3.
Hsu S, Lin F, Wu W, Liang C, Huang W, Chan W . miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2010; 39(Database issue):D163-9. PMC: 3013699. DOI: 10.1093/nar/gkq1107. View

4.
Liu C, Mallick B, Long D, Rennie W, Wolenc A, Carmack C . CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res. 2013; 41(14):e138. PMC: 3737542. DOI: 10.1093/nar/gkt435. View

5.
Haecker I, Gay L, Yang Y, Hu J, Morse A, McIntyre L . Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog. 2012; 8(8):e1002884. PMC: 3426530. DOI: 10.1371/journal.ppat.1002884. View