» Articles » PMID: 16722605

Partition Function and Base Pairing Probabilities of RNA Heterodimers

Overview
Publisher Biomed Central
Date 2006 May 26
PMID 16722605
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

Background: RNA has been recognized as a key player in cellular regulation in recent years. In many cases, non-coding RNAs exert their function by binding to other nucleic acids, as in the case of microRNAs and snoRNAs. The specificity of these interactions derives from the stability of inter-molecular base pairing. The accurate computational treatment of RNA-RNA binding therefore lies at the heart of target prediction algorithms.

Methods: The standard dynamic programming algorithms for computing secondary structures of linear single-stranded RNA molecules are extended to the co-folding of two interacting RNAs.

Results: We present a program, RNAcofold, that computes the hybridization energy and base pairing pattern of a pair of interacting RNA molecules. In contrast to earlier approaches, complex internal structures in both RNAs are fully taken into account. RNAcofold supports the calculation of the minimum energy structure and of a complete set of suboptimal structures in an energy band above the ground state. Furthermore, it provides an extension of McCaskill's partition function algorithm to compute base pairing probabilities, realistic interaction energies, and equilibrium concentrations of duplex structures.

Citing Articles

Mammalian piRNA target prediction using a hierarchical attention model.

Zhang T, Chen L, Zhu H, Wong G BMC Bioinformatics. 2025; 26(1):50.

PMID: 39934678 PMC: 11817350. DOI: 10.1186/s12859-025-06068-6.


Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy.

Imani S, Li X, Chen K, Maghsoudloo M, Jabbarzadeh Kaboli P, Hashemi M Front Cell Infect Microbiol. 2025; 14:1501010.

PMID: 39902185 PMC: 11788159. DOI: 10.3389/fcimb.2024.1501010.


identification of chilli genome encoded MicroRNAs targeting the 16S rRNA and genes of " phytoplasma trifolii.

Pandey V, Srivastava A, Gupta R, Zaki H, Shahid M, Gaur R Front Bioinform. 2025; 4():1493712.

PMID: 39834655 PMC: 11743513. DOI: 10.3389/fbinf.2024.1493712.


RNA encodes physical information.

Seim I, Zhang V, Jalihal A, Stormo B, Cole S, Ekena J bioRxiv. 2024; .

PMID: 39713325 PMC: 11661273. DOI: 10.1101/2024.12.11.627970.


Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development.

Zhang F, Ling L, Gao L Plants (Basel). 2024; 13(23).

PMID: 39683074 PMC: 11644493. DOI: 10.3390/plants13233281.


References
1.
Schubert S, Grunweller A, Erdmann V, Kurreck J . Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol. 2005; 348(4):883-93. DOI: 10.1016/j.jmb.2005.03.011. View

2.
Andronescu M, Zhang Z, Condon A . Secondary structure prediction of interacting RNA molecules. J Mol Biol. 2005; 345(5):987-1001. DOI: 10.1016/j.jmb.2004.10.082. View

3.
Dimitrov R, Zuker M . Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J. 2004; 87(1):215-26. PMC: 1304344. DOI: 10.1529/biophysj.103.020743. View

4.
Hackermuller J, Meisner N, Auer M, Jaritz M, Stadler P . The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. Gene. 2005; 345(1):3-12. DOI: 10.1016/j.gene.2004.11.043. View

5.
Mathews D, Disney M, Childs J, Schroeder S, Zuker M, Turner D . Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004; 101(19):7287-92. PMC: 409911. DOI: 10.1073/pnas.0401799101. View