» Articles » PMID: 23142080

Transcriptome-wide MiR-155 Binding Map Reveals Widespread Noncanonical MicroRNA Targeting

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2012 Nov 13
PMID 23142080
Citations 215
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) are essential components of gene regulation, but identification of miRNA targets remains a major challenge. Most target prediction and discovery relies on perfect complementarity of the miRNA seed to the 3' untranslated region (UTR). However, it is unclear to what extent miRNAs target sites without seed matches. Here, we performed a transcriptome-wide identification of the endogenous targets of a single miRNA-miR-155-in a genetically controlled manner. We found that approximately 40% of miR-155-dependent Argonaute binding occurs at sites without perfect seed matches. The majority of these noncanonical sites feature extensive complementarity to the miRNA seed with one mismatch. These noncanonical sites confer regulation of gene expression, albeit less potently than canonical sites. Thus, noncanonical miRNA binding sites are widespread, often contain seed-like motifs, and can regulate gene expression, generating a continuum of targeting and regulation.

Citing Articles

Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction.

Hart M, Diener C, Rheinheimer S, Kehl T, Keller A, Lenhof H RNA Biol. 2025; 22(1):1-9.

PMID: 39760255 PMC: 11730359. DOI: 10.1080/15476286.2025.2449775.


High-Throughput Quantification of miRNA-3'-Untranslated-Region Regulatory Effects.

Mastriano S, Kanoria S, Rennie W, Liu C, Li D, Cheng J bioRxiv. 2024; .

PMID: 39677669 PMC: 11643113. DOI: 10.1101/2024.12.05.626985.


Advancing microRNA target site prediction with transformer and base-pairing patterns.

Bi Y, Li F, Wang C, Pan T, Davidovich C, Webb G Nucleic Acids Res. 2024; 52(19):11455-11465.

PMID: 39271121 PMC: 11514461. DOI: 10.1093/nar/gkae782.


Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing.

Li X, Mills 4th W, Jin D, Meffert M Cell Rep Methods. 2024; 4(8):100836.

PMID: 39127045 PMC: 11384083. DOI: 10.1016/j.crmeth.2024.100836.


BTLA biology in cancer: from bench discoveries to clinical potentials.

Andrzejczak A, Karabon L Biomark Res. 2024; 12(1):8.

PMID: 38233898 PMC: 10795259. DOI: 10.1186/s40364-024-00556-2.


References
1.
Lim L, Lau N, Garrett-Engele P, Grimson A, Schelter J, Castle J . Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433(7027):769-73. DOI: 10.1038/nature03315. View

2.
Forman J, Legesse-Miller A, Coller H . A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008; 105(39):14879-84. PMC: 2567461. DOI: 10.1073/pnas.0803230105. View

3.
Gottwein E, Corcoran D, Mukherjee N, Skalsky R, Hafner M, Nusbaum J . Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011; 10(5):515-26. PMC: 3222872. DOI: 10.1016/j.chom.2011.09.012. View

4.
Ender C, Krek A, Friedlander M, Beitzinger M, Weinmann L, Chen W . A human snoRNA with microRNA-like functions. Mol Cell. 2008; 32(4):519-28. DOI: 10.1016/j.molcel.2008.10.017. View

5.
Lewis B, Burge C, Bartel D . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20. DOI: 10.1016/j.cell.2004.12.035. View