» Articles » PMID: 25094032

Extracellular Vesicles As Drug Delivery Systems: Lessons from the Liposome Field

Overview
Specialty Pharmacology
Date 2014 Aug 6
PMID 25094032
Citations 174
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular vesicles (EVs) are membrane-derived particles surrounded by a (phospho)lipid bilayer that are released by cells in the human body. In addition to direct cell-to-cell contact and the secretion of soluble factors, EVs function as another mechanism of intercellular communication. These vesicles are able to efficiently deliver their parental cell-derived molecular cargo to recipient cells, which can result in structural changes at an RNA, protein, or even phenotypic level. For this reason, EVs have recently gained much interest for drug delivery purposes. In contrast to these 'natural delivery systems', synthetic (phospho)lipid vesicles, or liposomes, have been employed as drug carriers for decades, resulting in several approved liposomal nanomedicines used in the clinic. This review discusses the similarities and differences between EVs and liposomes with the focus on features that are relevant for drug delivery purposes such as circulation time, biodistribution, cellular interactions and cargo loading. By applying beneficial features of EVs to liposomes and vice versa, improved drug carriers can be developed which will advance the field of nanomedicines and ultimately improve patient outcomes. While the application of EVs for therapeutic drug delivery is still in its infancy, issues regarding the understanding of EV biogenesis, large-scale production and in vivo interactions need to be addressed in order to develop successful and cost-effective EV-based drug delivery systems.

Citing Articles

Extracellular vesicle-mediated gene therapy targets BRAF-mutant colorectal cancer by inhibiting the MEK1/2-ERK1/2 pathway.

Wang D, Wang L, Zhang W, Xu K, Chen L, Guo Z J Nanobiotechnology. 2025; 23(1):129.

PMID: 39979881 PMC: 11843959. DOI: 10.1186/s12951-025-03205-4.


A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis.

Azimizonuzi H, Ghayourvahdat A, Ahmed M, Kareem R, Jaber Zrzor A, Mansoor A Cancer Cell Int. 2025; 25(1):26.

PMID: 39871316 PMC: 11773959. DOI: 10.1186/s12935-024-03610-z.


Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases.

Lerussi G, Villagrasa-Araya V, Molto-Abad M, Del Toro M, Pintos-Morell G, Seras-Franzoso J Life (Basel). 2025; 15(1).

PMID: 39860010 PMC: 11766495. DOI: 10.3390/life15010070.


Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics.

Mohamed A, Abaza T, Youssef Y, Rady M, Fahmy S, Kamel R Nanoscale Adv. 2025; 7(4):934-962.

PMID: 39823046 PMC: 11733735. DOI: 10.1039/d4na00393d.


The potential of autologous patient-derived circulating extracellular vesicles to improve drug delivery in rheumatoid arthritis.

Moskovitch O, Anaki A, Caller T, Gilburd B, Segal O, Gendelman O Clin Exp Immunol. 2025; 219(1).

PMID: 39756417 PMC: 11754864. DOI: 10.1093/cei/uxae101.