» Articles » PMID: 24998411

MicroRNA-19b Functions As Potential Anti-thrombotic Protector in Patients with Unstable Angina by Targeting Tissue Factor

Overview
Date 2014 Jul 8
PMID 24998411
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The activation of a hemostatic system plays a critical role in the incidence of acute coronary events. Hemostatic proteins may be regulated by microRNAs (miRNAs). Microparticles (MPs) are the major carrier of circulating miRNAs. The aim of this study was to determine the potential role of miRNAs in regulating gene expression involved in the hemostatic system in patients with unstable angina (UA). MiRNA expression profiles in the plasma from patients with UA (UA group, n=9) compared with individuals with clinical suspicion of coronary artery disease (CAD) but negative angiography (control group, n=9) showed that among 36 differentially expressed miRNAs, miR-19b was the most obvious one. Using real-time PCR, 5 selected miRNA levels in plasma (UA group, n=20; control group, n=30) and plasma MPs (UA group n=6; control group n=6) were proved to be consistent with the miRNA array. Flow cytometry analysis indicated that the amounts of plasma endothelial microparticles (EMPs) were increased in UA patients (UA group, n=4) compared to controls (control group, n=4). In cultured endothelial cells (ECs), TNF-α increased miR-19b release and expression. Tissue factor (TF) was predicted to be the target of miR-19b by bioinformatics analysis. Luciferase reporter assays demonstrated that miR-19b binds to TF mRNA. Overexpression of miR-19b inhibited TF expression and procoagulant activity. This study indicates that in UA patients, the increase of miR-19b wrapped in EMPs due to endothelial dysfunction may partially contribute to the circulating miR-19b elevation and miR-19b may play an anti-thrombotic role by inhibiting the expression of TF in ECs.

Citing Articles

Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation.

Richter P, Badescu M, Rezus C, Ouatu A, Dima N, Popescu D Int J Mol Sci. 2024; 25(20).

PMID: 39457063 PMC: 11509045. DOI: 10.3390/ijms252011281.


The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis.

Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S Curr Mol Med. 2023; 24(9):1135-1151.

PMID: 37817529 DOI: 10.2174/0115665240258746230919165935.


Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells.

Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z Front Med (Lausanne). 2023; 10:1193660.

PMID: 37469665 PMC: 10352799. DOI: 10.3389/fmed.2023.1193660.


The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation.

Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A Int J Mol Sci. 2023; 24(8).

PMID: 37108819 PMC: 10144470. DOI: 10.3390/ijms24087650.


Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders.

Danckwardt S, Tregouet D, Castoldi E Cardiovasc Res. 2023; 119(8):1624-1640.

PMID: 36943786 PMC: 10325701. DOI: 10.1093/cvr/cvad046.