» Articles » PMID: 24941330

Fully Integrated CMOS Microsystem for Electrochemical Measurements on 32 × 32 Working Electrodes at 90 Frames Per Second

Overview
Journal Anal Chem
Specialty Chemistry
Date 2014 Jun 19
PMID 24941330
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Microelectrode arrays offer the potential to electrochemically monitor concentrations of molecules at high spatial resolution. However, current systems are limited in the number of sensor sites, signal resolution, and throughput. Here, we present a fully integrated complementary metal oxide semiconductor (CMOS) system with an array of 32 × 32 working electrodes to perform electrochemical measurements like amperometry and voltammetry. The array consists of platinum electrodes with a center-to-center distance of 100 μm and electrode diameters of 5 to 50 μm. Currents in the range from 10 μA down to pA can be measured. The current is digitized by sigma-delta converters at a maximum resolution of 13.3 bits. The integrated noise is 220 fA for a bandwidth of 100 Hz, allowing for detection of pA currents. Currents can be continuously acquired at up to 1 kHz bandwidth, or the whole array can be read out rapidly at a frame rate of up to 90 Hz. The results of the electrical characterization meet the requirements of a wide range of electrochemical methods including cyclic voltammograms and amperometric images of high spatial and temporal resolution.

Citing Articles

Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag.

Costa J, Pimentel G, Poker J, Merces L, Paschoalino W, Vieira L Adv Healthc Mater. 2024; 13(11):e2303509.

PMID: 38245830 PMC: 11468374. DOI: 10.1002/adhm.202303509.


Ordered Mesoporous Electrodes for Sensing Applications.

Scala-Benuzzi M, Fernandez S, Gimenez G, Ybarra G, Soler-Illia G ACS Omega. 2023; 8(27):24128-24152.

PMID: 37457464 PMC: 10339336. DOI: 10.1021/acsomega.3c02013.


CMOS electrochemical pH localizer-imager.

Jung H, Jung W, Wang J, Abbott J, Horgan A, Fournier M Sci Adv. 2022; 8(30):eabm6815.

PMID: 35895813 PMC: 9328676. DOI: 10.1126/sciadv.abm6815.


Impedance Imaging of Cells and Tissues: Design and Applications.

Bounik R, Cardes F, Ulusan H, Modena M, Hierlemann A BME Front. 2022; 2022:1-21.

PMID: 35761901 PMC: 7612906. DOI: 10.34133/2022/9857485.


Bipolar Electrode Arrays for Chemical Imaging and Multiplexed Sensing.

Hsueh A, Ab Mutalib N, Shirato Y, Suzuki H ACS Omega. 2022; 7(23):20298-20305.

PMID: 35721987 PMC: 9202012. DOI: 10.1021/acsomega.2c02298.


References
1.
Kisler K, Kim B, Liu X, Berberian K, Fang Q, Mathai C . Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy. J Biomater Nanobiotechnol. 2012; 3(2A):243-253. PMC: 3375995. DOI: 10.4236/jbnb.2012.322030. View

2.
Roham M, Daberkow D, Ramsson E, Covey D, Pakdeeronachit S, Garris P . A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry. IEEE Trans Biomed Circuits Syst. 2013; 2(1):3-9. DOI: 10.1109/TBCAS.2008.918282. View

3.
Amatore C, Arbault S, Guille M, Lemaitre F . Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev. 2008; 108(7):2585-621. DOI: 10.1021/cr068062g. View

4.
Ronkainen N, Halsall H, Heineman W . Electrochemical biosensors. Chem Soc Rev. 2010; 39(5):1747-63. DOI: 10.1039/b714449k. View

5.
Mazhab-Jafari H, Soleymani L, Genov R . 16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans Biomed Circuits Syst. 2013; 6(5):468-78. DOI: 10.1109/TBCAS.2012.2226334. View