» Articles » PMID: 35895813

CMOS Electrochemical PH Localizer-imager

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Jul 27
PMID 35895813
Authors
Affiliations
Soon will be listed here.
Abstract

pH controls a large repertoire of chemical and biochemical processes in water. Densely arrayed pH microenvironments would parallelize these processes, enabling their high-throughput studies and applications. However, pH localization, let alone its arrayed realization, remains challenging because of fast diffusion of protons in water. Here, we demonstrate arrayed localizations of picoliter-scale aqueous acids, using a 256-electrochemical cell array defined on and operated by a complementary metal oxide semiconductor (CMOS)-integrated circuit. Each cell, comprising a concentric pair of cathode and anode with their current injections controlled with a sub-nanoampere resolution by the CMOS electronics, creates a local pH environment, or a pH "voxel," via confined electrochemistry. The system also monitors the spatiotemporal pH profile across the array in real time for precision pH control. We highlight the utility of this CMOS pH localizer-imager for high-throughput tasks by parallelizing pH-gated molecular state encoding and pH-regulated enzymatic DNA elongation at any selected set of cells.

Citing Articles

Transient colloidal crystals fueled by electrochemical reaction products.

Rath M, Srivastava S, Carmona E, Battumur S, Arumugam S, Albertus P Nat Commun. 2025; 16(1):2077.

PMID: 40021648 PMC: 11871323. DOI: 10.1038/s41467-025-57333-4.


Microscale insight into the proton concentration during electrolytic reaction via an optical microfiber: potential for microcurrent monitoring by a dielectric probe.

Huang Y, Liang J, Wu H, Chen P, Xiao A, Guan B Light Sci Appl. 2025; 14(1):73.

PMID: 39915465 PMC: 11802907. DOI: 10.1038/s41377-025-01770-9.


Wafer-level heterogeneous integration of electrochemical devices and semiconductors for a monolithic chip.

Xu S, Xia F, Li Z, Xu M, Hu B, Feng H Natl Sci Rev. 2024; 11(10):nwae049.

PMID: 39301075 PMC: 11409884. DOI: 10.1093/nsr/nwae049.


Recent progress in DNA data storage based on high-throughput DNA synthesis.

Jo S, Shin H, Joe S, Baek D, Park C, Chun H Biomed Eng Lett. 2024; 14(5):993-1009.

PMID: 39220021 PMC: 11362454. DOI: 10.1007/s13534-024-00386-z.


Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag.

Costa J, Pimentel G, Poker J, Merces L, Paschoalino W, Vieira L Adv Healthc Mater. 2024; 13(11):e2303509.

PMID: 38245830 PMC: 11468374. DOI: 10.1002/adhm.202303509.


References
1.
Kosuri S, Church G . Large-scale de novo DNA synthesis: technologies and applications. Nat Methods. 2014; 11(5):499-507. PMC: 7098426. DOI: 10.1038/nmeth.2918. View

2.
Liu Q, Chen L, Zhang Z, Du B, Xiao Y, Yang K . PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution. Sci Rep. 2017; 7(1):2994. PMC: 5462808. DOI: 10.1038/s41598-017-03177-y. View

3.
Sandford C, Edwards M, Klunder K, Hickey D, Li M, Barman K . A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem Sci. 2019; 10(26):6404-6422. PMC: 6615219. DOI: 10.1039/c9sc01545k. View

4.
Abbott J, Ye T, Krenek K, Gertner R, Ban S, Kim Y . A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat Biomed Eng. 2019; 4(2):232-241. PMC: 7035150. DOI: 10.1038/s41551-019-0455-7. View

5.
Hafizovic S, Heer F, Ugniwenko T, Frey U, Blau A, Ziegler C . A CMOS-based microelectrode array for interaction with neuronal cultures. J Neurosci Methods. 2007; 164(1):93-106. DOI: 10.1016/j.jneumeth.2007.04.006. View