» Articles » PMID: 24910389

Slug Regulates E-cadherin Repression Via P19Arf in Prostate Tumorigenesis

Overview
Journal Mol Oncol
Date 2014 Jun 10
PMID 24910389
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

SLUG represses E-cadherin to promote epithelial-mesenchymal transition (EMT) in various cancers. Mechanisms that regulate SLUG/E-cadherin pathway remain poorly understood, especially during tumorigenesis in vivo. Here we report that p19(Arf) (p14(ARF) in human) stabilizes Slug to inhibit E-cadherin in prostate cancer mouse models. Inactivation of p19(Arf) reduces Slug levels, resulting in increased E-cadherin expression and delaying the onset and progression of prostate cancer in Pten/Trp53 double null mice. Mechanistically, p14(ARF) stabilizes SLUG through increased sumoylation at lysine residue 192. Importantly, levels of SLUG and p14(ARF) are positively correlated in human prostate cancer specimens. These data demonstrated that ARF modulates the SLUG/E-cadherin signaling axis for augmenting prostate tumorigenesis in vivo, revealing a novel paradigm where the oncogenic functions of SLUG require ARF to target E-cadherin in prostate cancer. Collectively, our findings further support that ARF has dual tumor suppressive/oncogenic roles in cancers in a context-dependent manner.

Citing Articles

The impact of dysregulation SUMOylation on prostate cancer.

Li K, Wang H, Jiang B, Jin X J Transl Med. 2025; 23(1):286.

PMID: 40050932 PMC: 11887156. DOI: 10.1186/s12967-025-06271-2.


copy number alteration in bladder cancer: Integrative analysis in patient-derived xenografts and cancer patients.

Papadimitriou M, Pilala K, Panoutsopoulou K, Levis P, Kotronopoulos G, Kanaki Z Mol Ther Oncol. 2024; 32(2):200818.

PMID: 38966038 PMC: 11223115. DOI: 10.1016/j.omton.2024.200818.


Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets.

Singh V, Rajak N, Singh Y, Singh A, Giri R, Garg N Ann Surg Oncol. 2024; 31(7):4795-4808.

PMID: 38758485 DOI: 10.1245/s10434-024-15453-z.


The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications.

Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y Exp Hematol Oncol. 2023; 12(1):58.

PMID: 37415251 PMC: 10324244. DOI: 10.1186/s40164-023-00420-3.


Time to go: neural crest cell epithelial-to-mesenchymal transition.

Leathers T, Rogers C Development. 2022; 149(15).

PMID: 35905012 PMC: 9440755. DOI: 10.1242/dev.200712.


References
1.
Chen D, Shan J, Zhu W, Qin J, Gu W . Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature. 2010; 464(7288):624-7. PMC: 3737736. DOI: 10.1038/nature08820. View

2.
Xie Y, Liu S, Lu W, Yang Q, Williams K, Binhazim A . Slug regulates E-cadherin repression via p19Arf in prostate tumorigenesis. Mol Oncol. 2014; 8(7):1355-64. PMC: 4198473. DOI: 10.1016/j.molonc.2014.05.006. View

3.
Kho C, Lee A, Jeong D, Oh J, Chaanine A, Kizana E . SUMO1-dependent modulation of SERCA2a in heart failure. Nature. 2011; 477(7366):601-5. PMC: 3443490. DOI: 10.1038/nature10407. View

4.
Humbey O, Pimkina J, Zilfou J, Jarnik M, Dominguez-Brauer C, Burgess D . The ARF tumor suppressor can promote the progression of some tumors. Cancer Res. 2008; 68(23):9608-13. PMC: 2637809. DOI: 10.1158/0008-5472.CAN-08-2263. View

5.
den Besten W, Kuo M, Tago K, Williams R, Sherr C . Ubiquitination of, and sumoylation by, the Arf tumor suppressor. Isr Med Assoc J. 2006; 8(4):249-51. View