» Articles » PMID: 24898058

New PARP Targets for Cancer Therapy

Overview
Journal Nat Rev Cancer
Specialty Oncology
Date 2014 Jun 6
PMID 24898058
Citations 78
Authors
Affiliations
Soon will be listed here.
Abstract

Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.

Citing Articles

Novel inhibitors of PARP1 and PARP14: design, synthesis, and potentiation of cisplatin efficacy in cancer.

Kam C, Tauber A, Zunk M, McDermott C, Levonis S, Schweiker S Future Med Chem. 2024; 17(1):35-58.

PMID: 39691063 PMC: 11703142. DOI: 10.1080/17568919.2024.2437972.


DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity.

Bai B, Ma Y, Liu D, Zhang Y, Zhang W, Shi R Front Pharmacol. 2024; 15:1483160.

PMID: 39502534 PMC: 11534686. DOI: 10.3389/fphar.2024.1483160.


MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes.

Sulit A, Kolisnik T, Frizelle F, Purcell R, Schmeier S Gut Microbiome (Camb). 2024; 4:e4.

PMID: 39295912 PMC: 11406379. DOI: 10.1017/gmb.2022.12.


Advances in Personalized Oncology.

Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A Cancers (Basel). 2024; 16(16).

PMID: 39199633 PMC: 11352922. DOI: 10.3390/cancers16162862.


Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation.

Rutkowska A, Eberl H, Werner T, Hennrich M, Sevin D, Petretich M Cancer Res Commun. 2024; 4(9):2427-2443.

PMID: 39028932 PMC: 11403291. DOI: 10.1158/2767-9764.CRC-23-0549.


References
1.
Kuo J, Han X, Hsiao C, Yates 3rd J, Waterman C . Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol. 2011; 13(4):383-93. PMC: 3279191. DOI: 10.1038/ncb2216. View

2.
Leung A, Vyas S, Rood J, Bhutkar A, Sharp P, Chang P . Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell. 2011; 42(4):489-99. PMC: 3898460. DOI: 10.1016/j.molcel.2011.04.015. View

3.
Depping R, Lohaus C, Meyer H, Ruger W . The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun. 2005; 335(4):1217-23. DOI: 10.1016/j.bbrc.2005.08.023. View

4.
Chang P, Coughlin M, Mitchison T . Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol. 2005; 7(11):1133-9. DOI: 10.1038/ncb1322. View

5.
DAmours D, Desnoyers S, DSilva I, Poirier G . Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999; 342 ( Pt 2):249-68. PMC: 1220459. View