» Articles » PMID: 2483144

Electroretinography in Central Retinal Vein Occlusion. Correlation of Electroretinographic Changes with Pupillary Abnormalities

Overview
Specialty Ophthalmology
Date 1989 Jan 1
PMID 2483144
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

In 149 eyes with central retinal vein occlusion (CRVO), we prospectively investigated the role of routine, clinical electroretinography (ERG) in differentiating ischemic (60 eyes) from nonischemic CRVO (89 eyes). Single-flash photopic and scotopic ERGs were recorded. Data for the amplitudes and implicit times of a- and b-waves and for the b-/a-wave amplitude ratio were analyzed in detail. The study revealed that the best ERG parameter (for both photopic and scotopic ERG) for differentiating ischemic from nonischemic CRVO was a subnormal b-wave amplitude (reduced to less than or equal to 60% or by greater than or equal to 1 SD from the normal mean value, or less than or equal to 64%-69% of that in the fellow normal eye), with a sensitivity of 80%-90% and a specificity of 70%-80%. ERG findings were correlated with the relative afferent pupillary defect (RAPD). An RAPD of greater than or equal to 0.7 log units showed a sensitivity of 88% and a specificity of 90% in differentiating ischemic from nonischemic CRVO. ERG and RAPD findings showed a good correlation. The combined ERG and RAPD tests could differentiate 97%-100% of ischemic from nonischemic CRVO cases, with a specificity of about 70%.

Citing Articles

Oscillatory potential findings in patients with acute ischaemic central retinal vein occlusion.

Qu Y, Ran L, Wang G, Wang M, Li S BMJ Open Ophthalmol. 2024; 9(1).

PMID: 39142698 PMC: 11331877. DOI: 10.1136/bmjophth-2023-001582.


Quadrant Asymmetry in Optical Coherence Tomography Angiography Metrics in Ischemic Versus Non-Ischemic Central Retinal Vein Occlusion Eyes.

Jung J, Chan X, Lim S, Lee S, Rofagha S, Hoang Q Transl Vis Sci Technol. 2023; 12(3):30.

PMID: 36988945 PMC: 10064914. DOI: 10.1167/tvst.12.3.30.


Pre-treatment clinical features in central retinal vein occlusion that predict visual outcome following intravitreal ranibizumab.

Brogan K, Precup M, Rodger A, Young D, Gilmour D BMC Ophthalmol. 2018; 18(1):37.

PMID: 29426292 PMC: 5807839. DOI: 10.1186/s12886-018-0701-x.


The Royal College of Ophthalmologists Guidelines on retinal vein occlusions: executive summary.

Sivaprasad S, Amoaku W, Hykin P Eye (Lond). 2015; 29(12):1633-8.

PMID: 26315705 PMC: 5129788. DOI: 10.1038/eye.2015.164.


Morphological and electrophysiological outcome in prospective intravitreal bevacizumab treatment of macular edema secondary to central retinal vein occlusion.

Gardasevic Topcic I, Sustar M, Brecelj J, Hawlina M, Jaki Mekjavic P Doc Ophthalmol. 2014; 129(1):27-38.

PMID: 24906869 DOI: 10.1007/s10633-014-9445-y.


References
1.
Bresnick G, Palta M . Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1987; 105(5):660-4. DOI: 10.1001/archopht.1987.01060050078042. View

2.
Hayreh S . So-called "central retinal vein occlusion". I. Pathogenesis, terminology, clinical features. Ophthalmologica. 1976; 172(1):1-13. DOI: 10.1159/000307579. View

3.
Bresnick G, Palta M . Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987; 105(6):810-4. DOI: 10.1001/archopht.1987.01060060096041. View

4.
Hayreh S, Kolder H, Weingeist T . Central retinal artery occlusion and retinal tolerance time. Ophthalmology. 1980; 87(1):75-8. DOI: 10.1016/s0161-6420(80)35283-4. View

5.
Hayreh S, Rojas P, Podhajsky P, Montague P, Woolson R . Ocular neovascularization with retinal vascular occlusion-III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology. 1983; 90(5):488-506. DOI: 10.1016/s0161-6420(83)34542-5. View