» Articles » PMID: 24761311

Polyglutamine Disease Modeling: Epitope Based Screen for Homologous Recombination Using CRISPR/Cas9 System

Overview
Journal PLoS Curr
Specialty General Medicine
Date 2014 Apr 25
PMID 24761311
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

We have previously reported the genetic correction of Huntington's disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR.

Citing Articles

CRISPR/Cas9-mediated genetic correction reverses spinocerebellar ataxia 3 disease-associated phenotypes in differentiated cerebellar neurons.

Song G, Ma Y, Gao X, Zhang X, Zhang F, Tian C Life Med. 2025; 1(1):27-44.

PMID: 39872157 PMC: 11749335. DOI: 10.1093/lifemedi/lnac020.


Therapeutic approaches targeting aging and cellular senescence in Huntington's disease.

Bhat A, Moglad E, Afzal M, Thapa R, Almalki W, Kazmi I CNS Neurosci Ther. 2024; 30(10):e70053.

PMID: 39428700 PMC: 11491556. DOI: 10.1111/cns.70053.


CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy.

Qin Y, Li S, Li X, Yang S Neurosci Bull. 2022; 38(11):1397-1408.

PMID: 35608753 PMC: 9672252. DOI: 10.1007/s12264-022-00880-3.


Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools.

Karwacka M, Olejniczak M Cells. 2022; 11(3).

PMID: 35159326 PMC: 8834129. DOI: 10.3390/cells11030517.


Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review.

Monk R, Connor B Cells. 2021; 10(7).

PMID: 34206228 PMC: 8306243. DOI: 10.3390/cells10071565.


References
1.
Wilson K, McEwen A, Pruett-Miller S, Zhang J, Kildebeck E, Porteus M . Expanding the Repertoire of Target Sites for Zinc Finger Nuclease-mediated Genome Modification. Mol Ther Nucleic Acids. 2013; 2:e88. PMC: 3650245. DOI: 10.1038/mtna.2013.13. View

2.
Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y . Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet. 1995; 10(1):104-10. DOI: 10.1038/ng0595-104. View

3.
Niewoehner O, Jinek M, Doudna J . Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res. 2013; 42(2):1341-53. PMC: 3902920. DOI: 10.1093/nar/gkt922. View

4.
Mali P, Yang L, Esvelt K, Aach J, Guell M, DiCarlo J . RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6. PMC: 3712628. DOI: 10.1126/science.1232033. View

5.
Wilson K, Chateau M, Porteus M . Design and Development of Artificial Zinc Finger Transcription Factors and Zinc Finger Nucleases to the hTERT Locus. Mol Ther Nucleic Acids. 2013; 2:e87. PMC: 3650244. DOI: 10.1038/mtna.2013.12. View