» Articles » PMID: 34194298

Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions

Overview
Specialty Molecular Biology
Date 2021 Jul 1
PMID 34194298
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The pathogenesis of neurodegenerative diseases (NDDs) is complex and diverse. Over the decades, our understanding of NDD has been limited to pathological features. However, recent advances in gene sequencing have facilitated elucidation of NDD at a deeper level. Gene editing techniques have uncovered new genetic links to phenotypes, promoted the development of novel treatment strategies and equipped researchers with further means to construct effective cell and animal models. The current review describes the history of evolution of gene editing tools, with the aim of improving overall understanding of this technology, and focuses on the four most common NDD disorders to demonstrate the potential future applications and research directions of gene editing.

Citing Articles

Viruses and neurodegeneration: a growing concern.

Shouman S, Hesham N, Salem T J Transl Med. 2025; 23(1):46.

PMID: 39800721 PMC: 11727702. DOI: 10.1186/s12967-024-06025-6.


Brain Nucleic Acid Delivery and Genome Editing via Focused Ultrasound-Mediated Blood-Brain Barrier Opening and Long-Circulating Nanoparticles.

Kwak G, Grewal A, Slika H, Mess G, Li H, Kwatra M ACS Nano. 2024; 18(35):24139-24153.

PMID: 39172436 PMC: 11792178. DOI: 10.1021/acsnano.4c05270.


Emerging Perspectives on Prime Editor Delivery to the Brain.

BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M Pharmaceuticals (Basel). 2024; 17(6).

PMID: 38931430 PMC: 11206523. DOI: 10.3390/ph17060763.


The Role of Oxidative Stress in Trisomy 21 Phenotype.

Buczynska A, Sidorkiewicz I, Kretowski A, Zbucka-Kretowska M Cell Mol Neurobiol. 2023; 43(8):3943-3963.

PMID: 37819608 PMC: 10661812. DOI: 10.1007/s10571-023-01417-6.


Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection.

Voronin M, Abramova E, Verbovaya E, Vakhitova Y, Seredenin S Int J Mol Sci. 2023; 24(1).

PMID: 36614266 PMC: 9820882. DOI: 10.3390/ijms24010823.


References
1.
Chen V, Moncalvo M, Tringali D, Tagliafierro L, Shriskanda A, Ilich E . The mechanistic role of alpha-synuclein in the nucleus: impaired nuclear function caused by familial Parkinson's disease SNCA mutations. Hum Mol Genet. 2020; 29(18):3107-3121. PMC: 7645704. DOI: 10.1093/hmg/ddaa183. View

2.
Kowalczykowski S . An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol. 2015; 7(11). PMC: 4632670. DOI: 10.1101/cshperspect.a016410. View

3.
Lieber M . The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79:181-211. PMC: 3079308. DOI: 10.1146/annurev.biochem.052308.093131. View

4.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S . Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009; 326(5959):1509-12. DOI: 10.1126/science.1178811. View

5.
Mehta A, Haber J . Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014; 6(9):a016428. PMC: 4142968. DOI: 10.1101/cshperspect.a016428. View