» Articles » PMID: 28405721

Genome Editing: a Robust Technology for Human Stem Cells

Overview
Publisher Springer
Specialty Biology
Date 2017 Apr 14
PMID 28405721
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

Citing Articles

Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.

Hussen B, Hussen B, Taheri M, Yashooa R, Abdullah G, Abdullah S Int J Surg. 2024; 110(12):8002-8024.

PMID: 39497543 PMC: 11634165. DOI: 10.1097/JS9.0000000000002109.


Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies.

Sisli H, Hayal T, Seckin S, Senkal S, Kiratli B, Sahin F Adv Exp Med Biol. 2019; 1237:17-28.

PMID: 31728915 DOI: 10.1007/5584_2019_439.


Highly Efficient Genome Engineering in and Using the CRISPR/Cas9 System.

Wang Y, Wang D, Wang X, Tao H, Feng E, Zhu L Front Microbiol. 2019; 10:1932.

PMID: 31551942 PMC: 6736576. DOI: 10.3389/fmicb.2019.01932.


Two decades of embryonic stem cells: a historical overview.

Eguizabal C, Aran B, Chuva de Sousa Lopes S, Geens M, Heindryckx B, Panula S Hum Reprod Open. 2019; 2019(1):hoy024.

PMID: 30895264 PMC: 6396646. DOI: 10.1093/hropen/hoy024.

References
1.
Li T, Huang S, Zhao X, Wright D, Carpenter S, Spalding M . Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011; 39(14):6315-25. PMC: 3152341. DOI: 10.1093/nar/gkr188. View

2.
Xie F, Ye L, Chang J, Beyer A, Wang J, Muench M . Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24(9):1526-33. PMC: 4158758. DOI: 10.1101/gr.173427.114. View

3.
Yusa K, Rashid S, Strick-Marchand H, Varela I, Liu P, Paschon D . Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011; 478(7369):391-4. PMC: 3198846. DOI: 10.1038/nature10424. View

4.
Wang J, Exline C, DeClercq J, Llewellyn G, Hayward S, Li P . Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015; 33(12):1256-1263. PMC: 4842001. DOI: 10.1038/nbt.3408. View

5.
Swarts D, Mosterd C, van Passel M, Brouns S . CRISPR interference directs strand specific spacer acquisition. PLoS One. 2012; 7(4):e35888. PMC: 3338789. DOI: 10.1371/journal.pone.0035888. View