» Articles » PMID: 24695228

A Mesoscale Connectome of the Mouse Brain

Abstract

Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

Citing Articles

Decoding the Spatiotemporal Dynamics of Neural Response Similarity in Auditory Processing: A Multivariate Analysis Based on OPM-MEG.

Liu C, Ma Y, Liang X, Xiang M, Wu H, Ning X Hum Brain Mapp. 2025; 46(4):e70175.

PMID: 40016919 PMC: 11868016. DOI: 10.1002/hbm.70175.


Testing the role of spontaneous activity in visuospatial perception with patterned optogenetics.

Takahashi K, Pontes Quero S, Fiorilli J, Benedetti D, Yuste R, Friston K PLoS One. 2025; 20(2):e0318863.

PMID: 40014595 PMC: 11867336. DOI: 10.1371/journal.pone.0318863.


Brain-wide presynaptic networks of functionally distinct cortical neurons.

Inacio A, Lam K, Zhao Y, Pereira F, Gerfen C, Lee S Nature. 2025; .

PMID: 40011781 DOI: 10.1038/s41586-025-08631-w.


The role of structural connectivity on brain function through a Markov model of signal transmission.

Razban R, Banerjee A, Mujica-Parodi L, Bahar I bioRxiv. 2025; .

PMID: 39990492 PMC: 11844399. DOI: 10.1101/2024.11.10.622842.


Glutamatergic heterogeneity in the neuropeptide projections from the lateral hypothalamus to the mouse olfactory bulb.

Qi M, Won J, Rodriguez C, Storace D bioRxiv. 2025; .

PMID: 39990441 PMC: 11844501. DOI: 10.1101/2025.02.16.638511.


References
1.
Ohno S, Kuramoto E, Furuta T, Hioki H, Tanaka Y, Fujiyama F . A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex. 2011; 22(12):2840-57. DOI: 10.1093/cercor/bhr356. View

2.
Vertes R, Hoover W, Rodriguez J . Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry. Neuroscience. 2012; 219:120-36. DOI: 10.1016/j.neuroscience.2012.04.067. View

3.
Vertes R, Hoover W, Valle A, Sherman A, Rodriguez J . Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol. 2006; 499(5):768-96. DOI: 10.1002/cne.21135. View

4.
Jenett A, Rubin G, Ngo T, Shepherd D, Murphy C, Dionne H . A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2012; 2(4):991-1001. PMC: 3515021. DOI: 10.1016/j.celrep.2012.09.011. View

5.
Monconduit L, Bourgeais L, Bernard J, LE Bars D, Villanueva L . Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. J Neurosci. 1999; 19(20):9063-72. PMC: 6782779. View