» Articles » PMID: 24690108

Experimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2014 Apr 3
PMID 24690108
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

We describe mechanistic investigations of a catalyst (1) that leads to selective epoxidation of farnesol at the 6,7-position, remote from the hydroxyl directing group. The experimental lineage of peptide 1 and a number of resin-bound peptide analogues were examined to reveal the importance of four N-terminal residues. We examined the selectivity of truncated analogues to find that a trimer is sufficient to furnish the remote selectivity. Both 1D and 2D (1)H NMR studies were used to determine possible catalyst conformations, culminating in proposed models showing possible interactions of farnesol with a protected Thr side chain and backbone NH. The models were used to rationalize the selectivity of a modified catalyst (17) for the 6,7-position relative to an ether moiety in two related substrates.

Citing Articles

Organocatalytic activation of hydrogen peroxide: towards green and sustainable oxidations.

Poursaitidis E, Gkizis P, Triandafillidi I, Kokotos C Chem Sci. 2024; 15(4):1177-1203.

PMID: 38274062 PMC: 10806817. DOI: 10.1039/d3sc05618j.


Site-Selective Catalytic Epoxidation of Alkene with Tunable, Atomic Precision by Molecularly Imprinted Artificial Epoxidases.

Bose I, Zhao Y ACS Catal. 2022; 12(6):3444-3451.

PMID: 35515882 PMC: 9066603. DOI: 10.1021/acscatal.2c00253.


Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms.

Metrano A, Chinn A, Shugrue C, Stone E, Kim B, Miller S Chem Rev. 2020; 120(20):11479-11615.

PMID: 32969640 PMC: 8006536. DOI: 10.1021/acs.chemrev.0c00523.


Achieving Site-Selectivity for C-H Activation Processes Based on Distance and Geometry: A Carpenter's Approach.

Meng G, Lam N, Lucas E, Saint-Denis T, Verma P, Chekshin N J Am Chem Soc. 2020; 142(24):10571-10591.

PMID: 32437604 PMC: 7485751. DOI: 10.1021/jacs.0c04074.


Design of peptide-containing 5-unmodified neutral flavins that catalyze aerobic oxygenations.

Arakawa Y, Yamanomoto K, Kita H, Minagawa K, Tanaka M, Haraguchi N Chem Sci. 2018; 8(8):5468-5475.

PMID: 30155226 PMC: 6102831. DOI: 10.1039/c7sc01933e.


References
1.
Rousseau G, Breit B . Removable directing groups in organic synthesis and catalysis. Angew Chem Int Ed Engl. 2011; 50(11):2450-94. DOI: 10.1002/anie.201006139. View

2.
Mahajan M, Bhattacharjya S . β-Hairpin peptides: heme binding, catalysis, and structure in detergent micelles. Angew Chem Int Ed Engl. 2013; 52(25):6430-4. DOI: 10.1002/anie.201300241. View

3.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

4.
Malkov A, Czemerys L, Malyshev D . Vanadium-catalyzed asymmetric epoxidation of allylic alcohols in water. J Org Chem. 2009; 74(9):3350-5. DOI: 10.1021/jo900294h. View

5.
Li Z, Zhang W, Yamamoto H . Vanadium-catalyzed enantioselective desymmetrization of meso secondary allylic alcohols and homoallylic alcohols. Angew Chem Int Ed Engl. 2008; 47(39):7520-2. PMC: 3443975. DOI: 10.1002/anie.200802523. View