» Articles » PMID: 24652290

Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding

Abstract

A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.

Citing Articles

Engineering of anticancer human immunoglobulin A equipped with albumin for enhanced plasma half-life.

Mester S, Chan C, Lustig M, Foss S, Jansen J, Leangen Herigstad M PNAS Nexus. 2025; 4(2):pgaf042.

PMID: 40041621 PMC: 11878800. DOI: 10.1093/pnasnexus/pgaf042.


Rapid depletion of "catch-and-release" anti-ASGR1 antibody in vivo.

Devanaboyina S, Li P, LaGory E, Poon-Andersen C, Cook K, Soto M MAbs. 2024; 16(1):2383013.

PMID: 39051531 PMC: 11275528. DOI: 10.1080/19420862.2024.2383013.


Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions.

Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G MAbs. 2024; 16(1):2341443.

PMID: 38666503 PMC: 11057648. DOI: 10.1080/19420862.2024.2341443.


Cathepsin B Processing Is Required for the Efficacy of Albumin-Drug Conjugates.

Bernardim B, Conde J, Hakala T, Becher J, Canzano M, Vasco A Bioconjug Chem. 2024; 35(2):132-139.

PMID: 38345213 PMC: 10885003. DOI: 10.1021/acs.bioconjchem.3c00478.


An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation.

Dinesen A, Andersen V, Elkhashab M, Pilati D, Bech P, Fuchs E Bioconjug Chem. 2024; 35(2):214-222.

PMID: 38231391 PMC: 10886128. DOI: 10.1021/acs.bioconjchem.3c00491.


References
1.
West Jr A, Bjorkman P . Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). Biochemistry. 2000; 39(32):9698-708. DOI: 10.1021/bi000749m. View

2.
Andersen J, Dalhus B, Cameron J, Daba M, Plumridge A, Evans L . Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun. 2012; 3:610. PMC: 3272563. DOI: 10.1038/ncomms1607. View

3.
Evans L, Hughes M, Waters J, Cameron J, Dodsworth N, Tooth D . The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif. 2010; 73(2):113-24. DOI: 10.1016/j.pep.2010.05.009. View

4.
Kim J, Firan M, Radu C, Kim C, Ghetie V, Ward E . Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol. 1999; 29(9):2819-25. DOI: 10.1002/(SICI)1521-4141(199909)29:09<2819::AID-IMMU2819>3.0.CO;2-6. View

5.
Andersen J, Daba M, Berntzen G, Michaelsen T, Sandlie I . Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2009; 285(7):4826-36. PMC: 2836088. DOI: 10.1074/jbc.M109.081828. View