» Articles » PMID: 21131953

Loss of Ca(v)1.3 (CACNA1D) Function in a Human Channelopathy with Bradycardia and Congenital Deafness

Abstract

Deafness is genetically very heterogeneous and forms part of several syndromes. So far, delayed rectifier potassium channels have been linked to human deafness associated with prolongation of the QT interval on electrocardiograms and ventricular arrhythmia in Jervell and Lange-Nielsen syndrome. Ca(v)1.3 voltage-gated L-type calcium channels (LTCCs) translate sound-induced depolarization into neurotransmitter release in auditory hair cells and control diastolic depolarization in the mouse sinoatrial node (SAN). Human deafness has not previously been linked to defects in LTCCs. We used positional cloning to identify a mutation in CACNA1D, which encodes the pore-forming α1 subunit of Ca(v)1.3 LTCCs, in two consanguineous families with deafness. All deaf subjects showed pronounced SAN dysfunction at rest. The insertion of a glycine residue in a highly conserved, alternatively spliced region near the channel pore resulted in nonconducting calcium channels that had abnormal voltage-dependent gating. We describe a human channelopathy (termed SANDD syndrome, sinoatrial node dysfunction and deafness) with a cardiac and auditory phenotype that closely resembles that of Cacna1d(-/-) mice.

Citing Articles

CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left-Right Patterning in Xenopus tropicalis.

Kostiuk V, Kabir R, Akbari R, Rushing A, Gonzalez D, Kim A Genesis. 2025; 63(1):e70009.

PMID: 40008628 PMC: 11867209. DOI: 10.1002/dvg.70009.


The genetic landscape of pediatric postural orthostatic tachycardia syndrome.

Qu H, Qu J, Chang X, Williams N, Mentch F, Snyder J Clin Auton Res. 2025; .

PMID: 39964606 DOI: 10.1007/s10286-025-01110-2.


CaBP1 and 2 enable sustained Ca1.3 calcium currents and synaptic transmission in inner hair cells.

Oestreicher D, Chepurwar S, Kusch K, Rankovic V, Jung S, Strenzke N Elife. 2024; 13.

PMID: 39718549 PMC: 11668525. DOI: 10.7554/eLife.93646.


Opto-chemogenetic inhibition of L-type Ca1 channels in neurons through a membrane-assisted molecular linkage.

Geng J, Yang Y, Li B, Yu Z, Qiu S, Zhang W Cell Rep Methods. 2024; 4(11):100898.

PMID: 39515337 PMC: 11705922. DOI: 10.1016/j.crmeth.2024.100898.


Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence.

Tsuji R, Hamerschmidt R, Lavinsky J, Felix F, Silva V Braz J Otorhinolaryngol. 2024; 91(1):101512.

PMID: 39442262 PMC: 11539123. DOI: 10.1016/j.bjorl.2024.101512.


References
1.
Striessnig J, Bolz H, Koschak A . Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 2010; 460(2):361-74. PMC: 2883925. DOI: 10.1007/s00424-010-0800-x. View

2.
Safayhi H, Haase H, Kramer U, Bihlmayer A, Roenfeldt M, Ammon H . L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol. 1997; 11(5):619-29. DOI: 10.1210/mend.11.5.9922. View

3.
Cohen M, Bitner-Glindzicz M, Luxon L . The changing face of Usher syndrome: clinical implications. Int J Audiol. 2007; 46(2):82-93. DOI: 10.1080/14992020600975279. View

4.
Singh A, Gebhart M, Fritsch R, Sinnegger-Brauns M, Poggiani C, Hoda J . Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J Biol Chem. 2008; 283(30):20733-44. PMC: 2475692. DOI: 10.1074/jbc.M802254200. View

5.
Mangoni M, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J . Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A. 2003; 100(9):5543-8. PMC: 154381. DOI: 10.1073/pnas.0935295100. View