» Articles » PMID: 24529393

A Software Tool for the Analysis of Neuronal Morphology Data

Overview
Journal Int Arch Med
Publisher iMedPub
Specialty General Medicine
Date 2014 Feb 18
PMID 24529393
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Anatomy plays a fundamental role in supporting and shaping nervous system activity. The remarkable progress of computer processing power within the last two decades has enabled the generation of electronic databases of complete three-dimensional (3D) dendritic and axonal morphology for neuroanatomical studies. Several laboratories are freely posting their reconstructions online after result publication v.gr. NeuroMorpho.Org (Nat Rev Neurosci7:318-324, 2006). These neuroanatomical archives represent a crucial resource to explore the relationship between structure and function in the brain (Front Neurosci6:49, 2012). However, such 'Cartesian' descriptions bear little intuitive information for neuroscientists. Here, we developed a simple prototype of a MATLAB-based software tool to quantitatively describe the 3D neuronal structures from public repositories. The program imports neuronal reconstructions and quantifies statistical distributions of basic morphological parameters such as branch length, tortuosity, branch's genealogy and bifurcation angles. Using these morphological distributions, our algorithm can generate a set of virtual neurons readily usable for network simulations.

Citing Articles

A modular framework for multi-scale tissue imaging and neuronal segmentation.

Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara A Nat Commun. 2024; 15(1):4102.

PMID: 38778027 PMC: 11111705. DOI: 10.1038/s41467-024-48146-y.


Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?.

Rowland C, Moslehi S, Smith J, Harland B, Dalrymple-Alford J, Taylor R Adv Neurobiol. 2024; 36:877-906.

PMID: 38468068 DOI: 10.1007/978-3-031-47606-8_44.


Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites.

Rowland C, Smith J, Moslehi S, Harland B, Dalrymple-Alford J, Taylor R Front Netw Physiol. 2023; 3:1072815.

PMID: 36926542 PMC: 10013056. DOI: 10.3389/fnetp.2023.1072815.


Efficient metadata mining of web-accessible neural morphologies.

Akram M, Ljungquist B, Ascoli G Prog Biophys Mol Biol. 2021; 168:94-102.

PMID: 34022302 PMC: 8602463. DOI: 10.1016/j.pbiomolbio.2021.05.005.


Modeling the neuron as a nanocommunication system to identify spatiotemporal molecular events in neurodegenerative disease.

Banerjee A, Paluh J, Mukherjee A, Kumar K, Ghosh A, Naskar M Int J Nanomedicine. 2018; 13:3105-3128.

PMID: 29872297 PMC: 5975603. DOI: 10.2147/IJN.S152664.


References
1.
da Fontoura Costa L, Zawadzki K, Miazaki M, Viana M, Taraskin S . Unveiling the neuromorphological space. Front Comput Neurosci. 2010; 4:150. PMC: 3001740. DOI: 10.3389/fncom.2010.00150. View

2.
RALL W . Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959; 1:491-527. DOI: 10.1016/0014-4886(59)90046-9. View

3.
DeFelipe J . From the connectome to the synaptome: an epic love story. Science. 2010; 330(6008):1198-201. DOI: 10.1126/science.1193378. View

4.
Bullitt E, Gerig G, Pizer S, Lin W, Aylward S . Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans Med Imaging. 2003; 22(9):1163-71. PMC: 2430603. DOI: 10.1109/TMI.2003.816964. View

5.
Kaspirzhny A, Gogan P, Horcholle-Bossavit G, Tyc-Dumont S . Neuronal morphology data bases: morphological noise and assesment of data quality. Network. 2002; 13(3):357-80. View