Neuronal Morphology Data Bases: Morphological Noise and Assesment of Data Quality
Overview
Affiliations
For technical, instrumental and operator-related reasons, three-dimensional reconstructions of neurons obtained from intracellularly stained neuronal pieces scattered in serial sections are blurred by some morphological noise. This noise may strongly invalidate conclusions drawn from models built using the three-dimensional reconstructions and it must be taken into account when retrieving digitized neurons from available databases. We analyse the main generating sources of the noise and its consequences for the 'quality' of the data. We provide tools for detecting and evaluating the noise in any database providing sufficient information is given in the database. We propose a unified format for submitting data and a new neuron viewer/editor to analyse the digitized neurons with our tools.
Parekh R, Armananzas R, Ascoli G Cell Tissue Res. 2015; 360(1):121-7.
PMID: 25653123 PMC: 4722868. DOI: 10.1007/s00441-014-2103-6.
Context-aware modeling of neuronal morphologies.
Torben-Nielsen B, De Schutter E Front Neuroanat. 2014; 8:92.
PMID: 25249944 PMC: 4155795. DOI: 10.3389/fnana.2014.00092.
A software tool for the analysis of neuronal morphology data.
Ledderose J, Sencion L, Salgado H, Arias-Carrion O, Trevino M Int Arch Med. 2014; 7(1):6.
PMID: 24529393 PMC: 3928584. DOI: 10.1186/1755-7682-7-6.
Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology.
Myatt D, Hadlington T, Ascoli G, Nasuto S Front Neuroinform. 2012; 6:4.
PMID: 22438842 PMC: 3305991. DOI: 10.3389/fninf.2012.00004.
The DIADEM metric: comparing multiple reconstructions of the same neuron.
Gillette T, Brown K, Ascoli G Neuroinformatics. 2011; 9(2-3):233-45.
PMID: 21519813 PMC: 4339018. DOI: 10.1007/s12021-011-9117-y.