» Articles » PMID: 24474692

Signature Motifs Identify an Acinetobacter Cif Virulence Factor with Epoxide Hydrolase Activity

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2014 Jan 30
PMID 24474692
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections.

Citing Articles

Biochemical and structural characterization of two cif-like epoxide hydrolases from .

Taher N, Hvorecny K, Burke C, Gilman M, Heussler G, Adolf-Bryfogle J Curr Res Struct Biol. 2021; 3:72-84.

PMID: 34235487 PMC: 8244358. DOI: 10.1016/j.crstbi.2021.02.002.


Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization.

Tan S Infect Immun. 2021; 89(4).

PMID: 33526568 PMC: 8090958. DOI: 10.1128/IAI.00641-20.


Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes.

Dimitriou P, Denesyuk A, Nakayama T, Johnson M, Denessiouk K Protein Sci. 2018; 28(2):344-364.

PMID: 30311984 PMC: 6319758. DOI: 10.1002/pro.3527.


: Defining the Role of Efflux Pumps in Resistance to Antimicrobial Therapy, Surface Motility, and Biofilm Formation.

Knight D, Rudin S, Bonomo R, Rather P Front Microbiol. 2018; 9:1902.

PMID: 30186249 PMC: 6111201. DOI: 10.3389/fmicb.2018.01902.


Active-Site Flexibility and Substrate Specificity in a Bacterial Virulence Factor: Crystallographic Snapshots of an Epoxide Hydrolase.

Hvorecny K, Bahl C, Kitamura S, Lee K, Hammock B, Morisseau C Structure. 2017; 25(5):697-707.e4.

PMID: 28392259 PMC: 5524515. DOI: 10.1016/j.str.2017.03.002.


References
1.
Kochanek K, Xu J, Murphy S, Minino A, Kung H . Deaths: final data for 2009. Natl Vital Stat Rep. 2014; 60(3):1-116. View

2.
Erb-Downward J, Thompson D, Han M, Freeman C, McCloskey L, Schmidt L . Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011; 6(2):e16384. PMC: 3043049. DOI: 10.1371/journal.pone.0016384. View

3.
Bahl C, Morisseau C, Bomberger J, Stanton B, Hammock B, OToole G . Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor. J Bacteriol. 2010; 192(7):1785-95. PMC: 2838060. DOI: 10.1128/JB.01348-09. View

4.
Montero M, Dominguez M, Orozco-Levi M, Salvado M, Knobel H . Mortality of COPD patients infected with multi-resistant Pseudomonas aeruginosa: a case and control study. Infection. 2009; 37(1):16-9. DOI: 10.1007/s15010-008-8125-9. View

5.
MacEachran D, Ye S, Bomberger J, Hogan D, Swiatecka-Urban A, Stanton B . The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun. 2007; 75(8):3902-12. PMC: 1951978. DOI: 10.1128/IAI.00338-07. View