» Articles » PMID: 24466472

In Vivo Optical Spectroscopy for Improved Detection of Pancreatic Adenocarcinoma: a Feasibility Study

Overview
Specialty Radiology
Date 2014 Jan 28
PMID 24466472
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Pancreatic adenocarcinoma has a five-year survival rate of less than 6%. This low survival rate is attributed to the lack of accurate detection methods, which limits diagnosis to late-stage disease. Here, an in vivo pilot study assesses the feasibility of optical spectroscopy to improve clinical detection of pancreatic adenocarcinoma. During surgery on 6 patients, we collected spectrally-resolved reflectance and fluorescence in vivo. Site-matched in vivo and ex vivo data agreed qualitatively and quantitatively. Quantified differences between adenocarcinoma and normal tissues in vivo were consistent with previous results from a large ex vivo data set. Thus, optical spectroscopy is a promising method for the improved diagnosis of pancreatic cancer in vivo.

Citing Articles

Multimodal fiber probe for simultaneous mid-infrared and Raman spectroscopy.

Novikov A, Perevoschikov S, Usenov I, Sakharova T, Artyushenko V, Bogomolov A Sci Rep. 2024; 14(1):7430.

PMID: 38548800 PMC: 10978856. DOI: 10.1038/s41598-024-57539-4.


Estimation of porcine pancreas optical properties in the 600-1100 nm wavelength range for light-based therapies.

Lanka P, Bianchi L, Farina A, De Landro M, Pifferi A, Saccomandi P Sci Rep. 2022; 12(1):14300.

PMID: 35995952 PMC: 9395366. DOI: 10.1038/s41598-022-18277-7.


Needle-compatible miniaturized optoelectronic sensor for pancreatic cancer detection.

Lee S, Pakela J, Na K, Shi J, McKenna B, Simeone D Sci Adv. 2020; 6(47).

PMID: 33219025 PMC: 7679167. DOI: 10.1126/sciadv.abc1746.


Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps.

Lee S, Pakela J, Helton M, Vishwanath K, Chung Y, Kolodziejski N J Biomed Opt. 2017; 22(12):1-14.

PMID: 29243415 PMC: 5729962. DOI: 10.1117/1.JBO.22.12.121609.


Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications.

Wilson R, Vishwanath K, Mycek M Adv Phys. 2017; 1(4):523-543.

PMID: 28824194 PMC: 5560608. DOI: 10.1080/23746149.2016.1221739.


References
1.
Hu W, Zhao G, Wang C, Zhang J, Fu L . Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues. PLoS One. 2012; 7(5):e37962. PMC: 3360059. DOI: 10.1371/journal.pone.0037962. View

2.
Wilson R, Chandra M, Scheiman J, Simeone D, McKenna B, Purdy J . Optical spectroscopy detects histological hallmarks of pancreatic cancer. Opt Express. 2009; 17(20):17502-16. DOI: 10.1364/OE.17.017502. View

3.
Kanick S, van der Leest C, Aerts J, Hoogsteden H, Kascakova S, Sterenborg H . Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes. J Biomed Opt. 2010; 15(1):017004. DOI: 10.1117/1.3290822. View

4.
Lee S, Lloyd W, Chandra M, Wilson R, McKenna B, Simeone D . Characterizing human pancreatic cancer precursor using quantitative tissue optical spectroscopy. Biomed Opt Express. 2014; 4(12):2828-34. PMC: 3862164. DOI: 10.1364/BOE.4.002828. View

5.
Subramanian H, Pradhan P, Liu Y, Capoglu I, Rogers J, Roy H . Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. Opt Lett. 2009; 34(4):518-20. PMC: 2701738. DOI: 10.1364/ol.34.000518. View