» Articles » PMID: 17921354

PennCNV: an Integrated Hidden Markov Model Designed for High-resolution Copy Number Variation Detection in Whole-genome SNP Genotyping Data

Overview
Journal Genome Res
Specialty Genetics
Date 2007 Oct 9
PMID 17921354
Citations 1047
Authors
Affiliations
Soon will be listed here.
Abstract

Comprehensive identification and cataloging of copy number variations (CNVs) is required to provide a complete view of human genetic variation. The resolution of CNV detection in previous experimental designs has been limited to tens or hundreds of kilobases. Here we present PennCNV, a hidden Markov model (HMM) based approach, for kilobase-resolution detection of CNVs from Illumina high-density SNP genotyping data. This algorithm incorporates multiple sources of information, including total signal intensity and allelic intensity ratio at each SNP marker, the distance between neighboring SNPs, the allele frequency of SNPs, and the pedigree information where available. We applied PennCNV to genotyping data generated for 112 HapMap individuals; on average, we detected approximately 27 CNVs for each individual with a median size of approximately 12 kb. Excluding common rearrangements in lymphoblastoid cell lines, the fraction of CNVs in offspring not detected in parents (CNV-NDPs) was 3.3%. Our results demonstrate the feasibility of whole-genome fine-mapping of CNVs via high-density SNP genotyping.

Citing Articles

Large copy number variants are an important cause of congenital hyperinsulinism that should be screened for during routine testing.

Flanagan S, Lazaridi I, Mannisto J, Bennett J, Kalyon O, Johnson M Front Endocrinol (Lausanne). 2025; 16:1514916.

PMID: 40041288 PMC: 11876054. DOI: 10.3389/fendo.2025.1514916.


Copy number variants and the tangential expansion of the cerebral cortex.

Liao Z, Kumar K, Kopal J, Huguet G, Saci Z, Jean-Louis M Nat Commun. 2025; 16(1):1697.

PMID: 39962045 PMC: 11833094. DOI: 10.1038/s41467-025-56855-1.


Defects in the Mitochondrial Genome of Dogs with Recurrent Tumours.

Kowal K, Ziolkowska-Twarowska K, Tkaczyk-Wlizlo A, Grzybowska-Szatkowska L, Slaska B Int J Mol Sci. 2025; 25(24.

PMID: 39769179 PMC: 11678272. DOI: 10.3390/ijms252413414.


Analysis of exonic deletions in a large population study provides novel insights into NRXN1 pathology.

Montalbano S, Dybdahl Krebs M, Rosengren A, Vaez M, Georgii Hellberg K, Mortensen P NPJ Genom Med. 2024; 9(1):67.

PMID: 39695155 PMC: 11655628. DOI: 10.1038/s41525-024-00450-8.


Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes.

Huguet G, Renne T, Poulain C, Dubuc A, Kumar K, Kazem S Cell Genom. 2024; 4(12):100721.

PMID: 39667348 PMC: 11701252. DOI: 10.1016/j.xgen.2024.100721.


References
1.
Freeman J, Perry G, Feuk L, Redon R, McCarroll S, Altshuler D . Copy number variation: new insights in genome diversity. Genome Res. 2006; 16(8):949-61. DOI: 10.1101/gr.3677206. View

2.
Colella S, Yau C, Taylor J, Mirza G, Butler H, Clouston P . QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007; 35(6):2013-25. PMC: 1874617. DOI: 10.1093/nar/gkm076. View

3.
Peiffer D, Le J, Steemers F, Chang W, Jenniges T, Garcia F . High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006; 16(9):1136-48. PMC: 1557768. DOI: 10.1101/gr.5402306. View

4.
Tuzun E, Sharp A, Bailey J, Kaul R, Morrison V, Pertz L . Fine-scale structural variation of the human genome. Nat Genet. 2005; 37(7):727-32. DOI: 10.1038/ng1562. View

5.
Simon-Sanchez J, Scholz S, Fung H, Matarin M, Hernandez D, Gibbs J . Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals. Hum Mol Genet. 2006; 16(1):1-14. DOI: 10.1093/hmg/ddl436. View