6.
Yang X, Maurer K, Molanus M, Mager W, Siderius M, van der Vies S
. The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae. FEMS Yeast Res. 2006; 6(2):195-204.
DOI: 10.1111/j.1567-1364.2006.00026.x.
View
7.
Geymonat M, Spanos A, Sedgwick S
. A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene. 2007; 399(2):120-8.
DOI: 10.1016/j.gene.2007.05.001.
View
8.
James P, Halladay J, Craig E
. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996; 144(4):1425-36.
PMC: 1207695.
DOI: 10.1093/genetics/144.4.1425.
View
9.
Donze O, Picard D
. The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett. 2000; 467(1):111-6.
DOI: 10.1016/s0014-5793(00)01134-0.
View
10.
Smith J, Workman P
. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle. 2009; 8(3):362-72.
DOI: 10.4161/cc.8.3.7531.
View
11.
Talevich E, Mirza A, Kannan N
. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol. 2011; 11:321.
PMC: 3239843.
DOI: 10.1186/1471-2148-11-321.
View
12.
Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson D, Piper P
. Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem. 2002; 277(23):20151-9.
DOI: 10.1074/jbc.M201287200.
View
13.
Farrell A, MORGAN D
. Cdc37 promotes the stability of protein kinases Cdc28 and Cak1. Mol Cell Biol. 2000; 20(3):749-54.
PMC: 85190.
DOI: 10.1128/MCB.20.3.749-754.2000.
View
14.
Hawle P, Horst D, Bebelman J, Yang X, Siderius M, van der Vies S
. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). Eukaryot Cell. 2007; 6(3):521-32.
PMC: 1828922.
DOI: 10.1128/EC.00343-06.
View
15.
Brugge J, Erikson E, Erikson R
. The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell. 1981; 25(2):363-72.
DOI: 10.1016/0092-8674(81)90055-6.
View
16.
Enke D, Kaldis P, Solomon M
. Kinetic analysis of the cyclin-dependent kinase-activating kinase (Cak1p) from budding yeast. J Biol Chem. 2000; 275(43):33267-71.
DOI: 10.1074/jbc.M004748200.
View
17.
Roe S, Ali M, Meyer P, Vaughan C, Panaretou B, Piper P
. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell. 2004; 116(1):87-98.
DOI: 10.1016/s0092-8674(03)01027-4.
View
18.
Millson S, Truman A, King V, Prodromou C, Pearl L, Piper P
. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell. 2005; 4(5):849-60.
PMC: 1140089.
DOI: 10.1128/EC.4.5.849-860.2005.
View
19.
Cross F, Levine K
. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase. Mol Cell Biol. 1998; 18(5):2923-31.
PMC: 110671.
DOI: 10.1128/MCB.18.5.2923.
View
20.
Millson S, Truman A, Wolfram F, King V, Panaretou B, Prodromou C
. Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach. Cell Stress Chaperones. 2005; 9(4):359-68.
PMC: 1065275.
DOI: 10.1379/csc-29r1.1.
View