» Articles » PMID: 24424813

Spectral Hole Burning of the Primary Electron Donor State of Photosystem I

Overview
Journal Photosynth Res
Publisher Springer
Date 2014 Jan 16
PMID 24424813
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (λB) are broad (FWHM∼310 cm(-1)) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with λB. The λB hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4-6 and a corresponding mean phonon frequency in the range 35-50 cm(-1) together with an inhomogeneous line broadening of∼100 cm(-1) are found to provide good agreement with experiment. The zero-point level of P700(*) is predicted to lie at∼710 nm at 1.6K with an absorption maximum at∼702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.

Citing Articles

Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing.

Santabarbara S, Agostini A, Petrova A, Bortolus M, Casazza A, Carbonera D Photosynth Res. 2023; 159(2-3):133-152.

PMID: 37191762 DOI: 10.1007/s11120-023-01023-z.


PSI-SMALP, a Detergent-free Cyanobacterial Photosystem I, Reveals Faster Femtosecond Photochemistry.

Cherepanov D, Brady N, Shelaev I, Nguyen J, Gostev F, Mamedov M Biophys J. 2019; 118(2):337-351.

PMID: 31882247 PMC: 6976803. DOI: 10.1016/j.bpj.2019.11.3391.


Defining the far-red limit of photosystem I: the primary charge separation is functional to 840 nm.

Mokvist F, Mamedov F, Styring S J Biol Chem. 2014; 289(35):24630-9.

PMID: 25023284 PMC: 4148886. DOI: 10.1074/jbc.M114.555649.


Applications of spectral hole burning spectroscopies to antenna and reaction center complexes.

Reddy N, Lyle P, Small G Photosynth Res. 2014; 31(3):167-94.

PMID: 24408059 DOI: 10.1007/BF00035536.


Polarized site-selective fluorescence spectroscopy of the long-wavelength emitting chlorophylls in isolated Photosystem I particles of Synechococcus elongatus.

Palsson L, Dekker J, Schlodder E, Monshouwer R, van Grondelle R Photosynth Res. 2013; 48(1-2):239-46.

PMID: 24271304 DOI: 10.1007/BF00041014.


References
1.
Allen J, Feher G, Yeates T, Komiya H, Rees D . Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987; 84(16):5730-4. PMC: 298936. DOI: 10.1073/pnas.84.16.5730. View

2.
Mullet J, Burke J, Arntzen C . Chlorophyll proteins of photosystem I. Plant Physiol. 1980; 65(5):814-22. PMC: 440430. DOI: 10.1104/pp.65.5.814. View

3.
Lockhart D, Boxer S . Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci U S A. 1988; 85(1):107-11. PMC: 279492. DOI: 10.1073/pnas.85.1.107. View

4.
Fenton J, Pellin M, Govindjee , Kaufmann K . Primary photochemistry of the reaction center of photosystem I. FEBS Lett. 1979; 100(1):1-4. PMC: 7172937. DOI: 10.1016/0014-5793(79)81118-7. View

5.
Nanba O, Satoh K . Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987; 84(1):109-12. PMC: 304151. DOI: 10.1073/pnas.84.1.109. View