» Articles » PMID: 12829471

Energy Transfer in Photosystem I of Cyanobacteria Synechococcus Elongatus: Model Study with Structure-based Semi-empirical Hamiltonian and Experimental Spectral Density

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2003 Jun 28
PMID 12829471
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

We model the energy transfer and trapping kinetics in PSI. Rather than simply applying Förster theory, we develop a new approach to self-consistently describe energy transfer in a complex with heterogeneous couplings. Experimentally determined spectral densities are employed to calculate the energy transfer rates. The absorption spectrum and fluorescence decay time components of the complex at room temperature were reasonably reproduced. The roles of the special chlorophylls (red, linker, and reaction center, respectively) molecules are discussed. A formally exact expression for the trapping time is derived in terms of the intrinsic trapping time, mean first passage time to trap, and detrapping time. The energy transfer mechanism is discussed and the slowest steps of the arrival at the primary electron donor are found to contain two dominant steps: transfer-to-reaction-center, and transfer-to-trap-from-reaction-center. The intrinsic charge transfer time is estimated to be 0.8 approximately 1.7 ps. The optimality with respect to the trapping time of the calculated transition energies and the orientation of Chls is discussed.

Citing Articles

Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I.

Luo L, Martin A, Tandoh E, Chistoserdov A, Slipchenko L, Savikhin S Int J Mol Sci. 2024; 25(9).

PMID: 38732034 PMC: 11084960. DOI: 10.3390/ijms25094815.


Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll Pigments.

van Stokkum I, Muller M, Holzwarth A Int J Mol Sci. 2024; 25(7).

PMID: 38612934 PMC: 11012434. DOI: 10.3390/ijms25074125.


Harvesting electrons and holes from photodriven symmetry-breaking charge separation within a perylenediimide photosynthetic model dimer.

Bradley J, Coleman A, Brown P, Huang Y, Young R, Wasielewski M Proc Natl Acad Sci U S A. 2023; 120(48):e2313575120.

PMID: 37983509 PMC: 10691211. DOI: 10.1073/pnas.2313575120.


Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations.

Reiter S, Kiss F, Hauer J, de Vivie-Riedle R Chem Sci. 2023; 14(12):3117-3131.

PMID: 36970098 PMC: 10034153. DOI: 10.1039/d2sc06160k.


The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex.

Novoderezhkin V, Croce R Photosynth Res. 2022; 156(1):59-74.

PMID: 36374368 DOI: 10.1007/s11120-022-00979-8.


References
1.
Owens T, Webb S, Mets L, Alberte R, Fleming G . Antenna size dependence of fluorescence decay in the core antenna of photosystem I: estimates of charge separation and energy transfer rates. Proc Natl Acad Sci U S A. 1987; 84(6):1532-6. PMC: 304469. DOI: 10.1073/pnas.84.6.1532. View

2.
Zucchelli G, Jennings R, Garlaschi F, Cinque G, Bassi R, Cremonesi O . The calculated in vitro and in vivo chlorophyll a absorption bandshape. Biophys J. 2001; 82(1 Pt 1):378-90. PMC: 1302477. DOI: 10.1016/S0006-3495(02)75402-7. View

3.
Hastings G, Kleinherenbrink F, Lin S, Blankenship R . Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry. 1994; 33(11):3185-92. DOI: 10.1021/bi00177a007. View

4.
Breton J, Martin J, Migus A, Antonetti A, Orszag A . Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci U S A. 1986; 83(14):5121-5. PMC: 323902. DOI: 10.1073/pnas.83.14.5121. View

5.
Gobets B, Valkunas L, van Grondelle R . Bridging the gap between structural and lattice models: a parameterization of energy transfer and trapping in Photosystem I. Biophys J. 2003; 85(6):3872-82. PMC: 1303689. DOI: 10.1016/S0006-3495(03)74802-4. View