» Articles » PMID: 24413462

An Optogenetic Gene Expression System with Rapid Activation and Deactivation Kinetics

Overview
Journal Nat Chem Biol
Date 2014 Jan 14
PMID 24413462
Citations 167
Authors
Affiliations
Soon will be listed here.
Abstract

Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.

Citing Articles

Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.

Varma S, Gulati K, Sriramakrishnan J, Ganla R, Raval R Synth Syst Biotechnol. 2025; 10(2):356-364.

PMID: 39830078 PMC: 11741035. DOI: 10.1016/j.synbio.2024.12.005.


Precision tumor treatment utilizing bacteria: principles and future perspectives.

Liu Z, Wang L, Wu P, Yuan L Appl Microbiol Biotechnol. 2025; 109(1):2.

PMID: 39754636 PMC: 11700060. DOI: 10.1007/s00253-024-13378-x.


Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures.

Beyer H, Kumar S, Nieke M, Diehl C, Tang K, Shumka S Nat Commun. 2024; 15(1):10470.

PMID: 39622829 PMC: 11612184. DOI: 10.1038/s41467-024-54350-7.


Optogenetic Tools for Regulating RNA Metabolism and Functions.

Zheng R, Xue Z, You M Chembiochem. 2024; 25(24):e202400615.

PMID: 39316432 PMC: 11666399. DOI: 10.1002/cbic.202400615.


Optogenetic control of phosphate-responsive genes using single component fusion proteins in .

Cleere M, Gardner K bioRxiv. 2024; .

PMID: 39131330 PMC: 11312615. DOI: 10.1101/2024.08.02.605841.


References
1.
Lynch K, Weiss A . A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J Biol Chem. 2001; 276(26):24341-7. DOI: 10.1074/jbc.M102175200. View

2.
Kennis J, Crosson S, Gauden M, van Stokkum I, Moffat K, van Grondelle R . Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry. 2003; 42(12):3385-92. DOI: 10.1021/bi034022k. View

3.
Balciunas D, Wangensteen K, Wilber A, Bell J, Geurts A, Sivasubbu S . Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2006; 2(11):e169. PMC: 1635535. DOI: 10.1371/journal.pgen.0020169. View

4.
Huala E, Oeller P, Liscum E, Han I, Larsen E, Briggs W . Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science. 1998; 278(5346):2120-3. DOI: 10.1126/science.278.5346.2120. View

5.
Harper S, Neil L, Day I, Hore P, Gardner K . Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc. 2004; 126(11):3390-1. DOI: 10.1021/ja038224f. View