» Articles » PMID: 24291602

LTQ-XL Mass Spectrometry Proteome Analysis Expands the Pseudomonas Aeruginosa AmpR Regulon to Include Cyclic Di-GMP Phosphodiesterases and Phosphoproteins, and Identifies Novel Open Reading Frames

Overview
Journal J Proteomics
Publisher Elsevier
Specialty Biochemistry
Date 2013 Dec 3
PMID 24291602
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Biological Significance: The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.

Citing Articles

Characterization of a soluble library of the PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes.

Scherhag A, Raschle M, Unbehend N, Venn B, Glueck D, Muhlhaus T Microlife. 2023; 4:uqad028.

PMID: 37441524 PMC: 10335732. DOI: 10.1093/femsml/uqad028.


Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential.

Escobar-Salom M, Barcelo I, Jordana-Lluch E, Torrens G, Oliver A, Juan C FEMS Microbiol Rev. 2023; 47(2).

PMID: 36893807 PMC: 10039701. DOI: 10.1093/femsre/fuad010.


Temperate phages both mediate and drive adaptive evolution in pathogen biofilms.

Davies E, James C, Williams D, OBrien S, Fothergill J, Haldenby S Proc Natl Acad Sci U S A. 2016; 113(29):8266-71.

PMID: 27382184 PMC: 4961188. DOI: 10.1073/pnas.1520056113.


Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.

Guerin F, Isnard C, Cattoir V, Giard J Antimicrob Agents Chemother. 2015; 59(12):7753-61.

PMID: 26438498 PMC: 4649247. DOI: 10.1128/AAC.01729-15.


Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance.

Lee M, Hesek D, Blazquez B, Lastochkin E, Boggess B, Fisher J J Am Chem Soc. 2014; 137(1):190-200.

PMID: 25495032 PMC: 4304477. DOI: 10.1021/ja5111706.


References
1.
Lindberg F, Westman L, Normark S . Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc Natl Acad Sci U S A. 1985; 82(14):4620-4. PMC: 390437. DOI: 10.1073/pnas.82.14.4620. View

2.
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner K, Dove S . Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res. 2013; 42(2):979-98. PMC: 3902932. DOI: 10.1093/nar/gkt942. View

3.
Yamashita K, Ohara M, Kojima T, Nishimura R, Ogawa T, Hino T . Prevalence of drug-resistant opportunistic microorganisms in oral cavity after treatment for oral cancer. J Oral Sci. 2013; 55(2):145-55. DOI: 10.2334/josnusd.55.145. View

4.
Park C, Klammer A, Kall L, MacCoss M, Noble W . Rapid and accurate peptide identification from tandem mass spectra. J Proteome Res. 2008; 7(7):3022-7. PMC: 2667385. DOI: 10.1021/pr800127y. View

5.
Blonder J, Goshe M, Xiao W, Camp 2nd D, Wingerd M, Davis R . Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass spectrometry. J Proteome Res. 2004; 3(3):434-44. DOI: 10.1021/pr034074w. View