Barcelo I, Escobar-Salom M, Jordana-Lluch E, Torrens G, Oliver A, Juan C
Sci Rep. 2024; 14(1):189.
PMID: 38167986
PMC: 10762043.
DOI: 10.1038/s41598-023-50685-1.
Jha N, Dkhar D, Singh S, Malode S, Shetti N, Chandra P
Biosensors (Basel). 2023; 13(2).
PMID: 36832001
PMC: 9954051.
DOI: 10.3390/bios13020235.
Yang B, Jiang Y, Jin Y, Bai F, Cheng Z, Wu W
Antimicrob Agents Chemother. 2022; 66(3):e0207221.
PMID: 35007136
PMC: 8923159.
DOI: 10.1128/AAC.02072-21.
Dik D, Kim C, Madukoma C, Fisher J, Shrout J, Mobashery S
ACS Chem Biol. 2020; 15(5):1184-1194.
PMID: 31990176
PMC: 7980316.
DOI: 10.1021/acschembio.9b00875.
Juan C, Torrens G, Barcelo I, Oliver A
Microbiol Mol Biol Rev. 2018; 82(4).
PMID: 30209071
PMC: 6298613.
DOI: 10.1128/MMBR.00033-18.
Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.
Dik D, Fisher J, Mobashery S
Chem Rev. 2018; 118(12):5952-5984.
PMID: 29847102
PMC: 6855303.
DOI: 10.1021/acs.chemrev.8b00277.
Muropeptide Binding and the X-ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of Pseudomonas aeruginosa.
Dik D, Dominguez-Gil T, Lee M, Hesek D, Byun B, Fishovitz J
J Am Chem Soc. 2017; 139(4):1448-1451.
PMID: 28079369
PMC: 5436579.
DOI: 10.1021/jacs.6b12819.
Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1.
Zincke D, Balasubramanian D, Silver L, Mathee K
Antimicrob Agents Chemother. 2015; 60(2):936-45.
PMID: 26621621
PMC: 4750667.
DOI: 10.1128/AAC.01807-15.
Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR.
Caille O, Zincke D, Merighi M, Balasubramanian D, Kumari H, Kong K
J Bacteriol. 2014; 196(22):3890-902.
PMID: 25182487
PMC: 4248820.
DOI: 10.1128/JB.01997-14.
Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator.
Balasubramanian D, Kumari H, Mathee K
Pathog Dis. 2014; 73(2):1-14.
PMID: 25066236
PMC: 4542883.
DOI: 10.1111/2049-632X.12208.
Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics.
Kumari H, Balasubramanian D, Zincke D, Mathee K
J Med Microbiol. 2014; 63(Pt 4):544-555.
PMID: 24464693
PMC: 3973449.
DOI: 10.1099/jmm.0.070185-0.
LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames.
Kumari H, Murugapiran S, Balasubramanian D, Schneper L, Merighi M, Sarracino D
J Proteomics. 2013; 96:328-342.
PMID: 24291602
PMC: 4968692.
DOI: 10.1016/j.jprot.2013.11.018.
The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S
PLoS One. 2012; 7(3):e34067.
PMID: 22479525
PMC: 3315558.
DOI: 10.1371/journal.pone.0034067.
NagZ-dependent and NagZ-independent mechanisms for β-lactamase expression in Stenotrophomonas maltophilia.
Huang Y, Hu R, Lin C, Chung T, Yang T
Antimicrob Agents Chemother. 2012; 56(4):1936-41.
PMID: 22252801
PMC: 3318340.
DOI: 10.1128/AAC.05645-11.
ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression.
Zhang Y, Bao Q, Gagnon L, Huletsky A, Oliver A, Jin S
Antimicrob Agents Chemother. 2010; 54(11):4772-9.
PMID: 20713660
PMC: 2976151.
DOI: 10.1128/AAC.00009-10.
AmpN-AmpG operon is essential for expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia.
Huang Y, Lin C, Hu R, Lin Y, Chung T, Yang T
Antimicrob Agents Chemother. 2010; 54(6):2583-9.
PMID: 20385866
PMC: 2876420.
DOI: 10.1128/AAC.01283-09.
Beta-lactam antibiotics: from antibiosis to resistance and bacteriology.
Kong K, Schneper L, Mathee K
APMIS. 2010; 118(1):1-36.
PMID: 20041868
PMC: 2894812.
DOI: 10.1111/j.1600-0463.2009.02563.x.
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
Lister P, Wolter D, Hanson N
Clin Microbiol Rev. 2009; 22(4):582-610.
PMID: 19822890
PMC: 2772362.
DOI: 10.1128/CMR.00040-09.
Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
Asgarali A, Stubbs K, Oliver A, Vocadlo D, Mark B
Antimicrob Agents Chemother. 2009; 53(6):2274-82.
PMID: 19273679
PMC: 2687237.
DOI: 10.1128/AAC.01617-08.
Naturally occurring Class A ss-lactamases from the Burkholderia cepacia complex.
Poirel L, Rodriguez-Martinez J, Plesiat P, Nordmann P
Antimicrob Agents Chemother. 2008; 53(3):876-82.
PMID: 19075063
PMC: 2650541.
DOI: 10.1128/AAC.00946-08.