» Articles » PMID: 24235142

GATA3 Transcription Factor Abrogates Smad4 Transcription Factor-mediated Fascin Overexpression, Invadopodium Formation, and Breast Cancer Cell Invasion

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2013 Nov 16
PMID 24235142
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Transforming growth factor β (TGFβ) is a potent and context-dependent regulator of tumor progression. TGFβ promotes the lung metastasis of basal-like (but not the luminal-like) breast cancer. Here, we demonstrated that fascin, a pro-metastasis actin bundling protein, was a direct target of the canonical TGFβ-Smad4 signaling pathway in basal-like breast cancer cells. TGFβ and Smad4 induced fascin overexpression by directly binding to a Smad binding element on the fascin promoter. We identified GATA3, a transcription factor crucial for mammary gland morphogenesis and luminal differentiation, as a negative regulator of TGFβ- and Smad4-induced fascin overexpression. When ectopically expressed in basal-like breast cancer cells, GATA-3 abrogated TGFβ- and Smad4-mediated overexpression of fascin and other TGFβ response genes, invadopodium formation, cell migration, and invasion, suggesting suppression of the canonical TGFβ-Smad signaling axis. Mechanistically, GATA3 abrogated the canonical TGFβ-Smad signaling by abolishing interactions between Smad4 and its DNA binding elements, potentially through physical interactions between the N-terminal of GATA3 and Smad3/4 proteins. Our findings provide mechanistic insight into how TGFβ-mediated cell motility and invasiveness are differentially regulated in breast cancer.

Citing Articles

CDC20 Holds Novel Regulation Mechanism in RPA1 during Different Stages of DNA Damage to Induce Radio-Chemoresistance.

Gao Y, Wen P, Shao C, Ye C, Chen Y, You J Int J Mol Sci. 2024; 25(15).

PMID: 39125953 PMC: 11312485. DOI: 10.3390/ijms25158383.


RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing.

Maurin M, Ranjouri M, Megino-Luque C, Newberg J, Du D, Martin K Nat Commun. 2023; 14(1):8444.

PMID: 38114498 PMC: 10730836. DOI: 10.1038/s41467-023-44126-w.


Fascin-1 in Cancer Cell Metastasis: Old Target-New Insights.

Sarantelli E, Mourkakis A, Zacharia L, Stylianou A, Gkretsi V Int J Mol Sci. 2023; 24(14).

PMID: 37511011 PMC: 10379093. DOI: 10.3390/ijms241411253.


Lactate-mediated Fascin protrusions promote cell adhesion and migration in cervical cancer.

Han X, Du S, Chen X, Min X, Dong Z, Wang Y Theranostics. 2023; 13(7):2368-2383.

PMID: 37153736 PMC: 10157738. DOI: 10.7150/thno.83938.


Fascin-1: Updated biological functions and therapeutic implications in cancer biology.

Li C, Chan M, Liang S, Chang Y, Hsiao M BBA Adv. 2023; 2:100052.

PMID: 37082587 PMC: 10074911. DOI: 10.1016/j.bbadva.2022.100052.


References
1.
Bros M, Ross X, Pautz A, Reske-Kunz A, Ross R . The human fascin gene promoter is highly active in mature dendritic cells due to a stage-specific enhancer. J Immunol. 2003; 171(4):1825-34. DOI: 10.4049/jimmunol.171.4.1825. View

2.
Pillai S, Dasgupta P, Chellappan S . Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol. 2009; 523:323-39. DOI: 10.1007/978-1-59745-190-1_22. View

3.
Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X . Mutation of GATA3 in human breast tumors. Oncogene. 2004; 23(46):7669-78. DOI: 10.1038/sj.onc.1207966. View

4.
Yang S, Huang F, Huang J, Chen S, Jakoncic J, Leo-Macias A . Molecular mechanism of fascin function in filopodial formation. J Biol Chem. 2012; 288(1):274-84. PMC: 3537022. DOI: 10.1074/jbc.M112.427971. View

5.
Kouros-Mehr H, Slorach E, Sternlicht M, Werb Z . GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006; 127(5):1041-55. PMC: 2646406. DOI: 10.1016/j.cell.2006.09.048. View