» Articles » PMID: 24200520

Genetic Modifier Loci of Mouse Mfrp(rd6) Identified by Quantitative Trait Locus Analysis

Overview
Journal Exp Eye Res
Specialty Ophthalmology
Date 2013 Nov 9
PMID 24200520
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.

Citing Articles

Phenotypic consequences of a nanophthalmos-associated TMEM98 variant in human and mouse.

Hassall M, Javadiyan S, Klebe S, Awadalla M, Sharma S, Qassim A Sci Rep. 2023; 13(1):11017.

PMID: 37419942 PMC: 10328987. DOI: 10.1038/s41598-023-37855-x.


Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss.

Collin G, Gogna N, Chang B, Damkham N, Pinkney J, Hyde L Cells. 2020; 9(4).

PMID: 32290105 PMC: 7227028. DOI: 10.3390/cells9040931.


Long-Term Effects of Gene Therapy in a Novel Mouse Model of Human -Associated Retinopathy.

Chekuri A, Sahu B, Chavali V, Voronchikhina M, Soto-Hermida A, Suk J Hum Gene Ther. 2018; 30(5):632-650.

PMID: 30499344 PMC: 6534092. DOI: 10.1089/hum.2018.192.


Genetic modifiers as relevant biological variables of eye disorders.

Meyer K, Anderson M Hum Mol Genet. 2017; 26(R1):R58-R67.

PMID: 28482014 PMC: 5886476. DOI: 10.1093/hmg/ddx180.


Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats.

Korbolina E, Ershov N, Bryzgalov L, Kolosova N BMC Genomics. 2015; 15 Suppl 12:S3.

PMID: 25563673 PMC: 4303943. DOI: 10.1186/1471-2164-15-S12-S3.


References
1.
Johnson B, Aoyama N, Friedell N, Ikeda S, Ikeda A . Genetic modification of the schisis phenotype in a mouse model of X-linked retinoschisis. Genetics. 2008; 178(3):1785-94. PMC: 2278062. DOI: 10.1534/genetics.107.084905. View

2.
Chang B, Hawes N, Hurd R, Davisson M, Nusinowitz S, Heckenlively J . Retinal degeneration mutants in the mouse. Vision Res. 2002; 42(4):517-25. DOI: 10.1016/s0042-6989(01)00146-8. View

3.
Mattapallil M, Wawrousek E, Chan C, Zhao H, Roychoudhury J, Ferguson T . The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci. 2012; 53(6):2921-7. PMC: 3376073. DOI: 10.1167/iovs.12-9662. View

4.
Daiger S, Bowne S, Sullivan L . Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007; 125(2):151-8. PMC: 2580741. DOI: 10.1001/archopht.125.2.151. View

5.
Ayuso C, Millan J . Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med. 2010; 2(5):34. PMC: 2887078. DOI: 10.1186/gm155. View