» Articles » PMID: 23999615

A Cost-benefit Analysis of the Physical Mechanisms of Membrane Curvature

Overview
Journal Nat Cell Biol
Specialty Cell Biology
Date 2013 Sep 4
PMID 23999615
Citations 108
Authors
Affiliations
Soon will be listed here.
Abstract

Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.

Citing Articles

Biophysical modeling of membrane curvature generation and curvature sensing by the glycocalyx.

Xiao K, Park S, Stachowiak J, Rangamani P Proc Natl Acad Sci U S A. 2025; 122(8):e2418357122.

PMID: 39969997 PMC: 11873937. DOI: 10.1073/pnas.2418357122.


Invagination of Giant Unilamellar Vesicles upon Membrane Mixing with Native Vesicles.

Dhanawat G, Dey M, Singh A, Parveen N ACS Omega. 2024; 9(46):46615-46626.

PMID: 39583730 PMC: 11579933. DOI: 10.1021/acsomega.4c08971.


Caveolin assemblies displace one bilayer leaflet to organize and bend membranes.

Doktorova M, Daum S, Ebenhan J, Neudorf S, Han B, Sharma S bioRxiv. 2024; .

PMID: 39257813 PMC: 11383982. DOI: 10.1101/2024.08.28.610209.


Delineating the shape of COat Protein complex-II coated membrane bud.

Paul S, Audhya A, Cui Q PNAS Nexus. 2024; 3(8):pgae305.

PMID: 39108303 PMC: 11302526. DOI: 10.1093/pnasnexus/pgae305.


Morphodynamical adaptation of the endolysosomal system to stress.

Da Graca J, Delevoye C, Morel E FEBS J. 2024; 292(2):248-260.

PMID: 38706230 PMC: 11734881. DOI: 10.1111/febs.17154.


References
1.
Faini M, Prinz S, Beck R, Schorb M, Riches J, Bacia K . The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science. 2012; 336(6087):1451-4. DOI: 10.1126/science.1221443. View

2.
Stagg S, Gurkan C, Fowler D, LaPointe P, Foss T, Potter C . Structure of the Sec13/31 COPII coat cage. Nature. 2006; 439(7073):234-8. DOI: 10.1038/nature04339. View

3.
Luo Y, Zhan Y, Keen J . Arf6 regulation of Gyrating-clathrin. Traffic. 2012; 14(1):97-106. PMC: 3548066. DOI: 10.1111/tra.12014. View

4.
Zhang F, Zang T, Wilson S, Johnson M, Bieniasz P . Clathrin facilitates the morphogenesis of retrovirus particles. PLoS Pathog. 2011; 7(6):e1002119. PMC: 3128127. DOI: 10.1371/journal.ppat.1002119. View

5.
Darsow T, Katzmann D, Cowles C, Emr S . Vps41p function in the alkaline phosphatase pathway requires homo-oligomerization and interaction with AP-3 through two distinct domains. Mol Biol Cell. 2001; 12(1):37-51. PMC: 30566. DOI: 10.1091/mbc.12.1.37. View