He H, Fan S, Hu G, Wang B, Liu D, Wang X
J Fungi (Basel). 2025; 11(2).
PMID: 39997421
PMC: 11856996.
DOI: 10.3390/jof11020127.
Allwright M, Guennewig B, Hoffmann A, Rohleder C, Jieu B, Chung L
Sci Rep. 2024; 14(1):4375.
PMID: 38388524
PMC: 10883992.
DOI: 10.1038/s41598-024-53860-0.
Canals D, Hannun Y
Adv Biol Regul. 2023; 91:101009.
PMID: 38128364
PMC: 11829740.
DOI: 10.1016/j.jbior.2023.101009.
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres M, Bordas-Murphy H
Circ Res. 2023; 134(1):81-96.
PMID: 38037825
PMC: 10766100.
DOI: 10.1161/CIRCRESAHA.123.323445.
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H
Front Cell Dev Biol. 2023; 11:1141543.
PMID: 37215082
PMC: 10192583.
DOI: 10.3389/fcell.2023.1141543.
Synthesis of 3,4-dihydroisoquinolin-1(2)-one derivatives and their antioomycete activity against the phytopathogen .
Wang D, Li M, Li J, Fang Y, Zhang Z
RSC Adv. 2023; 13(16):10523-10541.
PMID: 37021099
PMC: 10068754.
DOI: 10.1039/d3ra00855j.
Role of sphingolipid metabolites in the homeostasis of steroid hormones and the maintenance of testicular functions.
Wang D, Tang Y, Wang Z
Front Endocrinol (Lausanne). 2023; 14:1170023.
PMID: 37008929
PMC: 10065405.
DOI: 10.3389/fendo.2023.1170023.
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains.
Hartrampf N, Leitao S, Winter N, Toombs-Ruane H, Frank J, Schwille P
Biophys J. 2023; 122(11):2325-2341.
PMID: 36869591
PMC: 10257215.
DOI: 10.1016/j.bpj.2023.02.029.
Diverse Sphingolipid Species Harbor Different Effects on Ire1 Clustering.
Bieniawski M, Stevens K, Witham C, Steuart R, Bankaitis V, Mousley C
Int J Mol Sci. 2022; 23(20).
PMID: 36293008
PMC: 9602660.
DOI: 10.3390/ijms232012130.
The effect of soil sample size, for practical DNA extraction, on soil microbial diversity in different taxonomic ranks.
Morita H, Akao S
PLoS One. 2021; 16(11):e0260121.
PMID: 34793564
PMC: 8601499.
DOI: 10.1371/journal.pone.0260121.
Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives.
Liu N, Hou L, Bao J, Wang L, Chen X
Plant Commun. 2021; 2(5):100214.
PMID: 34746760
PMC: 8553973.
DOI: 10.1016/j.xplc.2021.100214.
Hydroxylated Fatty Acids: The Role of the Sphingomyelin Synthase and the Origin of Selectivity.
Sessa L, Nardiello A, Santoro J, Concilio S, Piotto S
Membranes (Basel). 2021; 11(10).
PMID: 34677553
PMC: 8539438.
DOI: 10.3390/membranes11100787.
Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity.
Zakharova O, Mastalygina E, Golokhvast K, Gusev A
Nanomaterials (Basel). 2021; 11(9).
PMID: 34578739
PMC: 8469389.
DOI: 10.3390/nano11092425.
Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes.
Lee H, Choi S
Adv Sci (Weinh). 2021; 8(20):e2101766.
PMID: 34473415
PMC: 8529493.
DOI: 10.1002/advs.202101766.
Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β.
Yi Y, Lin Y, Han J, Lee H, Park N, Nam G
Chem Sci. 2021; 12(7):2456-2466.
PMID: 34164011
PMC: 8179336.
DOI: 10.1039/d0sc04366d.
Extracellular vesicles: Roles and applications in drug-induced liver injury.
Umbaugh D, Jaeschke H
Adv Clin Chem. 2021; 102:63-125.
PMID: 34044913
PMC: 8982523.
DOI: 10.1016/bs.acc.2020.08.010.
Physicochemical, Antioxidant, and Anti-Inflammatory Properties of Rapeseed Lecithin Liposomes Loading a Chia ( L.) Seed Extract.
Aleman A, Perez-Garcia S, de Palencia P, Montero M, Gomez-Guillen M
Antioxidants (Basel). 2021; 10(5).
PMID: 33924836
PMC: 8145232.
DOI: 10.3390/antiox10050693.
Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition.
Luhr J, Alex N, Amon L, Krater M, Kubankova M, Sezgin E
Front Immunol. 2020; 11:590121.
PMID: 33329576
PMC: 7728921.
DOI: 10.3389/fimmu.2020.590121.
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential.
Zhao A, Shah K, Cromer B, Sumer H
Stem Cells Int. 2020; 2020:8825771.
PMID: 32908543
PMC: 7463378.
DOI: 10.1155/2020/8825771.
The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance.
Balakrishnan A, Roy S, Fleming T, Leong H, Schuurmans C
Cancers (Basel). 2020; 12(7).
PMID: 32707733
PMC: 7409063.
DOI: 10.3390/cancers12071964.