» Articles » PMID: 23995137

Genome Sequencing of 161 Mycobacterium Tuberculosis Isolates from China Identifies Genes and Intergenic Regions Associated with Drug Resistance

Abstract

The worldwide emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis threatens to make this disease incurable. Drug resistance mechanisms are only partially understood, and whether the current understanding of the genetic basis of drug resistance in M. tuberculosis is sufficiently comprehensive remains unclear. Here we sequenced and analyzed 161 isolates with a range of drug resistance profiles, discovering 72 new genes, 28 intergenic regions (IGRs), 11 nonsynonymous SNPs and 10 IGR SNPs with strong, consistent associations with drug resistance. On the basis of our examination of the dN/dS ratios of nonsynonymous to synonymous SNPs among the isolates, we suggest that the drug resistance-associated genes identified here likely contain essentially all the nonsynonymous SNPs that have arisen as a result of drug pressure in these isolates and should thus represent a near-complete set of drug resistance-associated genes for these isolates and antibiotics. Our work indicates that the genetic basis of drug resistance is more complex than previously anticipated and provides a strong foundation for elucidating unknown drug resistance mechanisms.

Citing Articles

Identification of and sp. in Malayan pangolins-a potential threat to public health?.

Wang H, Wang X, Cao Y, Chen Y, Zou Z, Lu X mSphere. 2024; 9(10):e0055124.

PMID: 39345123 PMC: 11520285. DOI: 10.1128/msphere.00551-24.


Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition.

Wang S, Wang K, Song K, Lai Z, Li P, Li D Nat Commun. 2024; 15(1):7710.

PMID: 39231991 PMC: 11375168. DOI: 10.1038/s41467-024-51948-9.


Loss of glycerol catabolism confers carbon-source-dependent artemisinin resistance in .

Martini M, Alonso M, Cafiero J, Xiao J, Shell S Antimicrob Agents Chemother. 2024; 68(10):e0064524.

PMID: 39194262 PMC: 11459938. DOI: 10.1128/aac.00645-24.


New option: targeting RNase J and RNase HI in the fight against multi-drug-resistant tuberculosis.

Khadka P, Thapaliya J Ann Med Surg (Lond). 2024; 86(5):2376-2378.

PMID: 38694338 PMC: 11060219. DOI: 10.1097/MS9.0000000000001859.


Identification of positively selected genes in from southern Xinjiang Uygur autonomous region of China.

Deng L, Wang Q, Liu H, Jiang Y, Xu M, Xiang Y Front Microbiol. 2024; 15:1290227.

PMID: 38686109 PMC: 11056549. DOI: 10.3389/fmicb.2024.1290227.


References
1.
Arnvig K, Comas I, Thomson N, Houghton J, Boshoff H, Croucher N . Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis. PLoS Pathog. 2011; 7(11):e1002342. PMC: 3207917. DOI: 10.1371/journal.ppat.1002342. View

2.
Ramaswamy S, Musser J . Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 2000; 79(1):3-29. DOI: 10.1054/tuld.1998.0002. View

3.
Gavalda S, Leger M, van der Rest B, Stella A, Bardou F, Montrozier H . The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem. 2009; 284(29):19255-64. PMC: 2740550. DOI: 10.1074/jbc.M109.006940. View

4.
Zhao Y, Xu S, Wang L, Chin D, Wang S, Jiang G . National survey of drug-resistant tuberculosis in China. N Engl J Med. 2012; 366(23):2161-70. DOI: 10.1056/NEJMoa1108789. View

5.
Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston M . Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993; 341(8846):647-50. DOI: 10.1016/0140-6736(93)90417-f. View