» Articles » PMID: 23992662

Molecular Insight into Substrate Recognition and Catalysis of Baeyer-Villiger Monooxygenase MtmOIV, the Key Frame-modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin

Overview
Journal ACS Chem Biol
Specialties Biochemistry
Biology
Date 2013 Sep 3
PMID 23992662
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.

Citing Articles

Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis.

Little R, Paiva F, Jenkins R, Hong H, Sun Y, Demydchuk Y Nat Catal. 2024; 2(11):1045-1054.

PMID: 39659772 PMC: 7617221. DOI: 10.1038/s41929-019-0351-2.


A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone.

Feng K, Zhang Y, Zhang M, Yang Y, Liu J, Pan L Nat Commun. 2023; 14(1):3436.

PMID: 37301868 PMC: 10257657. DOI: 10.1038/s41467-023-39108-x.


Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.

Toplak M, Teufel R Biochemistry. 2021; 61(2):47-56.

PMID: 34962769 PMC: 8772269. DOI: 10.1021/acs.biochem.1c00763.


Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis.

Toplak M, Saleem-Batcha R, Piel J, Teufel R Angew Chem Int Ed Engl. 2021; 60(52):26960-26970.

PMID: 34652045 PMC: 9299503. DOI: 10.1002/anie.202109384.


Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.

Frensch B, Lechtenberg T, Kather M, Yunt Z, Betschart M, Kammerer B Nat Commun. 2021; 12(1):1431.

PMID: 33664266 PMC: 7933358. DOI: 10.1038/s41467-021-21432-9.


References
1.
Wang G, Pahari P, Kharel M, Chen J, Zhu H, Van Lanen S . Cooperation of two bifunctional enzymes in the biosynthesis and attachment of deoxysugars of the antitumor antibiotic mithramycin. Angew Chem Int Ed Engl. 2012; 51(42):10638-42. PMC: 3821964. DOI: 10.1002/anie.201205414. View

2.
Zojer N, Keck A, Pecherstorfer M . Comparative tolerability of drug therapies for hypercalcaemia of malignancy. Drug Saf. 1999; 21(5):389-406. DOI: 10.2165/00002018-199921050-00004. View

3.
Leadbeater C, McIver L, Campopiano D, Webster S, Baxter R, Kelly S . Probing the NADPH-binding site of Escherichia coli flavodoxin oxidoreductase. Biochem J. 2000; 352 Pt 2:257-66. PMC: 1221455. View

4.
Hadjipavlou A, Gaitanis L, Katonis P, Lander P . Paget's disease of the spine and its management. Eur Spine J. 2001; 10(5):370-84. PMC: 3611523. DOI: 10.1007/s005860100329. View

5.
Emsley P, Cowtan K . Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2126-32. DOI: 10.1107/S0907444904019158. View