» Articles » PMID: 23916135

SPARCL1 Suppresses Metastasis in Prostate Cancer

Abstract

Purpose: Metastasis, the main cause of death from cancer, remains poorly understood at the molecular level.

Experimental Design: Based on a pattern of reduced expression in human prostate cancer tissues and tumor cell lines, a candidate suppressor gene (SPARCL1) was identified. We used in vitro approaches to determine whether overexpression of SPARCL1 affects cell growth, migration, and invasiveness. We then employed xenograft mouse models to analyze the impact of SPARCL1 on prostate cancer cell growth and metastasis in vivo.

Results: SPARCL1 expression did not inhibit tumor cell proliferation in vitro. By contrast, SPARCL1 did suppress tumor cell migration and invasiveness in vitro and tumor metastatic growth in vivo, conferring improved survival in xenograft mouse models.

Conclusions: We present the first in vivo data suggesting that SPARCL1 suppresses metastasis of prostate cancer.

Citing Articles

The oncogenic functions of SPARCL1 in bladder cancer.

Li C, Yuan H, Chen J, Shang K, He H J Cell Mol Med. 2024; 28(22):e70196.

PMID: 39548034 PMC: 11567778. DOI: 10.1111/jcmm.70196.


Urine biomarkers can predict prostate cancer and PI-RADS score prior to biopsy.

Pavlovic B, Brautigam K, Dartiguenave F, Martel P, Rakauskas A, Cesson V Sci Rep. 2024; 14(1):18148.

PMID: 39103428 PMC: 11300834. DOI: 10.1038/s41598-024-68026-1.


SPARCL1 promotes chondrocytes extracellular matrix degradation and inflammation in osteoarthritis via TNF/NF-κB pathway.

Miao Y, Wu S, Gong Z, Chen Y, Xue F, Liu K J Orthop Translat. 2024; 46:116-128.

PMID: 38867741 PMC: 11167206. DOI: 10.1016/j.jot.2024.02.009.


Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis.

Tian Z, Yang S Aging (Albany NY). 2023; 15(13):6361-6379.

PMID: 37421595 PMC: 10373969. DOI: 10.18632/aging.204856.


Identifying liver metastasis-related hub genes in breast cancer and characterizing as a potential prognostic biomarker.

Chen M, Zheng W, Fang L PeerJ. 2023; 11:e15311.

PMID: 37180578 PMC: 10174054. DOI: 10.7717/peerj.15311.


References
1.
Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V . ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One. 2010; 5(5):e10547. PMC: 2866657. DOI: 10.1371/journal.pone.0010547. View

2.
Chandran U, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W . Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007; 7:64. PMC: 1865555. DOI: 10.1186/1471-2407-7-64. View

3.
Vander Griend D, Rinker-Schaeffer C . A new look at an old problem: the survival and organ-specific growth of metastases. Sci STKE. 2004; 2004(216):pe3. DOI: 10.1126/stke.2162004pe3. View

4.
Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin. 2012; 62(1):10-29. DOI: 10.3322/caac.20138. View

5.
Park S, Kim S, McCauley L, Gallick G . Pre-clinical mouse models of human prostate cancer and their utility in drug discovery. Curr Protoc Pharmacol. 2011; Chapter 14:Unit 14.15. PMC: 3072580. DOI: 10.1002/0471141755.ph1415s51. View