» Articles » PMID: 23818525

Binding and Movement of Individual Cel7A Cellobiohydrolases on Crystalline Cellulose Surfaces Revealed by Single-molecule Fluorescence Imaging

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2013 Jul 3
PMID 23818525
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.

Citing Articles

Are cellulases slow? Kinetic and thermodynamic limitations for enzymatic breakdown of cellulose.

Westh P, Kari J, Badino S, Sorensen T, Christensen S, Rojel N BBA Adv. 2025; 7:100128.

PMID: 39758504 PMC: 11699605. DOI: 10.1016/j.bbadva.2024.100128.


Thermobifida fusca Cel6B moves bidirectionally while processively degrading cellulose.

Johnson M, DeChellis A, Nemmaru B, Chundawat S, Lang M Biotechnol Biofuels Bioprod. 2024; 17(1):140.

PMID: 39633461 PMC: 11616356. DOI: 10.1186/s13068-024-02588-0.


Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data.

Nousi A, Molina G, Schiano-di-Cola C, Sorensen T, Borch K, Pedersen J J Phys Chem B. 2024; 128(3):635-647.

PMID: 38227769 PMC: 10824242. DOI: 10.1021/acs.jpcb.3c05697.


A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases.

Keller M, Badino S, Rojel N, Sorensen T, Kari J, McBrayer B J Biol Chem. 2021; 296:100504.

PMID: 33675751 PMC: 8047454. DOI: 10.1016/j.jbc.2021.100504.


Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose.

Mudinoor A, Goodwin P, Rao R, Karuna N, Hitomi A, Nill J Biotechnol Biofuels. 2020; 13:10.

PMID: 31988662 PMC: 6969433. DOI: 10.1186/s13068-020-1649-7.


References
1.
Henrissat B, Teeri T, Warren R . A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 1998; 425(2):352-4. DOI: 10.1016/s0014-5793(98)00265-8. View

2.
Jeoh T, Ishizawa C, Davis M, Himmel M, Adney W, Johnson D . Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng. 2007; 98(1):112-22. DOI: 10.1002/bit.21408. View

3.
Doner L, Irwin P . Assay of reducing end-groups in oligosaccharide homologues with 2,2'-bicinchoninate. Anal Biochem. 1992; 202(1):50-3. DOI: 10.1016/0003-2697(92)90204-k. View

4.
Zhang Y, Lynd L . Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004; 88(7):797-824. DOI: 10.1002/bit.20282. View

5.
Lynd L, Weimer P, van Zyl W, Pretorius I . Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002; 66(3):506-77, table of contents. PMC: 120791. DOI: 10.1128/MMBR.66.3.506-577.2002. View