» Articles » PMID: 23713058

A Finite Element-based Constrained Mixture Implementation for Arterial Growth, Remodeling, and Adaptation: Theory and Numerical Verification

Overview
Publisher Wiley
Date 2013 May 29
PMID 23713058
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

We implemented a constrained mixture model of arterial growth and remodeling in a nonlinear finite element framework to facilitate numerical analyses of diverse cases of arterial adaptation and maladaptation, including disease progression, resulting in complex evolving geometries and compositions. This model enables hypothesis testing by predicting consequences of postulated characteristics of cell and matrix turnover, including evolving quantities and orientations of fibrillar constituents and nonhomogenous degradation of elastin or loss of smooth muscle function. The nonlinear finite element formulation is general within the context of arterial mechanics, but we restricted our present numerical verification to cylindrical geometries to allow comparisons with prior results for two special cases: uniform transmural changes in mass and differential growth and remodeling within a two-layered cylindrical model of the human aorta. The present finite element model recovers the results of these simplified semi-inverse analyses with good agreement.

Citing Articles

FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method.

Pfaller M, Latorre M, Schwarz E, Gerosa F, Szafron J, Humphrey J Comput Methods Appl Mech Eng. 2024; 431.

PMID: 39430055 PMC: 11484312. DOI: 10.1016/j.cma.2024.117259.


Implantation of a capsular tension ring during cataract surgery attenuates predicted remodeling of the post-surgical lens capsule along the visual axis.

Ameku K, Berggren C, Pedrigi R Front Bioeng Biotechnol. 2024; 11:1300830.

PMID: 38312508 PMC: 10834774. DOI: 10.3389/fbioe.2023.1300830.


An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta.

Navarrete A, Utrera A, Rivera E, Latorre M, Celentano D, Garcia-Herrera C Front Bioeng Biotechnol. 2023; 11:1301988.

PMID: 38053847 PMC: 10694237. DOI: 10.3389/fbioe.2023.1301988.


PDE-constrained shape registration to characterize biological growth and morphogenesis from imaging data.

Pawar A, Li L, Gosain A, Umulis D, Tepole A Eng Comput. 2023; 38(5):3909-3924.

PMID: 38046797 PMC: 10691863. DOI: 10.1007/s00366-022-01682-x.


The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data.

Peng C, He W, Huang X, Ma J, Yuan T, Shi Y Front Bioeng Biotechnol. 2023; 11:1103905.

PMID: 37064230 PMC: 10098133. DOI: 10.3389/fbioe.2023.1103905.


References
1.
Valentin A, Humphrey J . Modeling effects of axial extension on arterial growth and remodeling. Med Biol Eng Comput. 2009; 47(9):979-87. PMC: 3607502. DOI: 10.1007/s11517-009-0513-5. View

2.
OCallaghan C, Williams B . Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension. 2000; 36(3):319-24. DOI: 10.1161/01.hyp.36.3.319. View

3.
Salsac A, Sparks S, Lasheras J . Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann Vasc Surg. 2004; 18(1):14-21. DOI: 10.1007/s10016-003-0101-3. View

4.
Vorp D . Biomechanics of abdominal aortic aneurysm. J Biomech. 2007; 40(9):1887-902. PMC: 2692528. DOI: 10.1016/j.jbiomech.2006.09.003. View

5.
Fonck E, Prodhom G, Roy S, Augsburger L, Rufenacht D, Stergiopulos N . Effect of elastin degradation on carotid wall mechanics as assessed by a constituent-based biomechanical model. Am J Physiol Heart Circ Physiol. 2007; 292(6):H2754-63. DOI: 10.1152/ajpheart.01108.2006. View