Kracik J, Kubicek L, Staffa R, Polzer S
PLoS One. 2024; 19(12):e0314368.
PMID: 39621730
PMC: 11611137.
DOI: 10.1371/journal.pone.0314368.
Pfaller M, Latorre M, Schwarz E, Gerosa F, Szafron J, Humphrey J
Comput Methods Appl Mech Eng. 2024; 431.
PMID: 39430055
PMC: 11484312.
DOI: 10.1016/j.cma.2024.117259.
Weiss D, Yeung N, Ramachandra A, Humphrey J
Cells Dev. 2024; 180:203971.
PMID: 39426523
PMC: 11634634.
DOI: 10.1016/j.cdev.2024.203971.
Fandaros M, Kwok C, Wolf Z, Labropoulos N, Yin W
Cardiovasc Eng Technol. 2024; 15(5):503-521.
PMID: 38710896
DOI: 10.1007/s13239-024-00731-4.
Bracamonte J, Saunders S, Wilson J, Truong U, Soares J
Appl Sci (Basel). 2023; 12(8).
PMID: 36911244
PMC: 10004130.
DOI: 10.3390/app12083954.
Full-field strain mapping of healthy and pathological mouse aortas using stereo digital image correlation.
Lane B, Cardoza R, Lessner S, Vyavahare N, Sutton M, Eberth J
J Mech Behav Biomed Mater. 2023; 141:105745.
PMID: 36893686
PMC: 10081968.
DOI: 10.1016/j.jmbbm.2023.105745.
Biomechanical Properties of Mouse Carotid Arteries With Diet-Induced Metabolic Syndrome and Aging.
Gkousioudi A, Yu X, Ferruzzi J, Qian J, Wainford R, Seta F
Front Bioeng Biotechnol. 2022; 10:862996.
PMID: 35392404
PMC: 8980683.
DOI: 10.3389/fbioe.2022.862996.
Quality Control for 4D Flow MR Imaging.
Isoda H, Fukuyama A
Magn Reson Med Sci. 2022; 21(2):278-292.
PMID: 35197395
PMC: 9680545.
DOI: 10.2463/mrms.rev.2021-0165.
A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation.
Zhang J, Brindise M, Rothenberger S, Markl M, Rayz V, Vlachos P
J R Soc Interface. 2022; 19(186):20210751.
PMID: 35042385
PMC: 8767185.
DOI: 10.1098/rsif.2021.0751.
Does the Internal Carotid Artery Attenuate Blood-Flow Pulsatility in Small Vessel Disease? A 7 T 4D-Flow MRI Study.
van Tuijl R, Ruigrok Y, Geurts L, van der Schaaf I, Biessels G, Rinkel G
J Magn Reson Imaging. 2022; 56(2):527-535.
PMID: 34997655
PMC: 9546379.
DOI: 10.1002/jmri.28062.
In vivo parameter identification in arteries considering multiple levels of smooth muscle activity.
Gade J, Thore C, Sonesson B, Stalhand J
Biomech Model Mechanobiol. 2021; 20(4):1547-1559.
PMID: 33934232
PMC: 8298368.
DOI: 10.1007/s10237-021-01462-4.
Preclinical techniques to investigate exercise training in vascular pathophysiology.
Sangha G, Goergen C, Prior S, Ranadive S, Clyne A
Am J Physiol Heart Circ Physiol. 2021; 320(4):H1566-H1600.
PMID: 33385323
PMC: 8260379.
DOI: 10.1152/ajpheart.00719.2020.
Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition.
Wu J, Augustin C, Shadden S
J Mech Behav Biomed Mater. 2020; 114:104161.
PMID: 33229142
PMC: 7612608.
DOI: 10.1016/j.jmbbm.2020.104161.
Velocity Pulsatility and Arterial Distensibility Along the Internal Carotid Artery.
van Tuijl R, Ruigrok Y, Velthuis B, van der Schaaf I, Rinkel G, Zwanenburg J
J Am Heart Assoc. 2020; 9(16):e016883.
PMID: 32783485
PMC: 7660833.
DOI: 10.1161/JAHA.120.016883.
Arterial Hypertension and Unusual Ascending Aortic Dilatation in a Neonate With Acute Kidney Injury: Mechanistic Computer Modeling.
Altamirano-Diaz L, Kassay A, Serajelahi B, McIntyre C, Filler G, Kharche S
Front Physiol. 2019; 10:1391.
PMID: 31780955
PMC: 6856675.
DOI: 10.3389/fphys.2019.01391.
Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function.
Ferruzzi J, Di Achille P, Tellides G, Humphrey J
PLoS One. 2018; 13(9):e0201379.
PMID: 30192758
PMC: 6128471.
DOI: 10.1371/journal.pone.0201379.
Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension.
Latorre M, Humphrey J
Biomech Model Mechanobiol. 2018; 17(5):1497-1511.
PMID: 29881909
PMC: 6286240.
DOI: 10.1007/s10237-018-1041-8.
The Effect of Strain Hardening on the Dynamic Response of Human Artery Segments.
Charalambous H, Roussis P, Giannakopoulos A
Open Biomed Eng J. 2018; 11:85-110.
PMID: 29387276
PMC: 5748871.
DOI: 10.2174/1874120701711010085.
Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling.
Cuomo F, Roccabianca S, Dillon-Murphy D, Xiao N, Humphrey J, Figueroa C
PLoS One. 2017; 12(3):e0173177.
PMID: 28253335
PMC: 5333881.
DOI: 10.1371/journal.pone.0173177.
Energy-based constitutive modelling of local material properties of canine aortas.
Laksari K, Shahmirzadi D, Acosta C, Konofagou E
R Soc Open Sci. 2016; 3(9):160365.
PMID: 27703701
PMC: 5043320.
DOI: 10.1098/rsos.160365.