6.
Gharahi H, Zambrano B, Lim C, Choi J, Lee W, Baek S
. On growth measurements of abdominal aortic aneurysms using maximally inscribed spheres. Med Eng Phys. 2015; 37(7):683-91.
PMC: 4478225.
DOI: 10.1016/j.medengphy.2015.04.011.
View
7.
Boyd A, Kuhn D, Lozowy R, Kulbisky G
. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. J Vasc Surg. 2015; 63(6):1613-9.
DOI: 10.1016/j.jvs.2015.01.040.
View
8.
Qiu Y, Yuan D, Wen J, Fan Y, Zheng T
. Numerical identification of the rupture locations in patient-specific abdominal aortic aneurysmsusing hemodynamic parameters. Comput Methods Biomech Biomed Engin. 2017; 21(1):1-12.
DOI: 10.1080/10255842.2017.1410796.
View
9.
Amirbekian S, Long Jr R, Consolini M, Suo J, Willett N, Fielden S
. In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization. Am J Physiol Heart Circ Physiol. 2009; 297(4):H1290-5.
PMC: 2879376.
DOI: 10.1152/ajpheart.00889.2008.
View
10.
Lan H, Updegrove A, Wilson N, Maher G, Shadden S, Marsden A
. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package. J Biomech Eng. 2017; 140(2).
PMC: 5816252.
DOI: 10.1115/1.4038751.
View
11.
Vergara C, Le Van D, Quadrio M, Formaggia L, Domanin M
. Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Med Eng Phys. 2017; 47:38-46.
DOI: 10.1016/j.medengphy.2017.06.030.
View
12.
Arzani A, Suh G, Dalman R, Shadden S
. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol. 2014; 307(12):H1786-95.
PMC: 4269702.
DOI: 10.1152/ajpheart.00461.2014.
View
13.
Khalafvand S, Ng E, Zhong L, Hung T
. Three-dimensional diastolic blood flow in the left ventricle. J Biomech. 2016; 50:71-76.
DOI: 10.1016/j.jbiomech.2016.11.032.
View
14.
Di Martino E, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P
. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys. 2002; 23(9):647-55.
DOI: 10.1016/s1350-4533(01)00093-5.
View
15.
Shi Y, Peng C, Liu J, Lan H, Li C, Qin W
. A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries. Comput Methods Biomech Biomed Engin. 2021; 24(15):1718-1729.
DOI: 10.1080/10255842.2021.1912742.
View
16.
Lindquist Liljeqvist M, Hultgren R, Bergman O, Villard C, Kronqvist M, Eriksson P
. Tunica-Specific Transcriptome of Abdominal Aortic Aneurysm and the Effect of Intraluminal Thrombus, Smoking, and Diameter Growth Rate. Arterioscler Thromb Vasc Biol. 2020; 40(11):2700-2713.
DOI: 10.1161/ATVBAHA.120.314264.
View
17.
Meng H, Tutino V, Xiang J, Siddiqui A
. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2013; 35(7):1254-62.
PMC: 7966576.
DOI: 10.3174/ajnr.A3558.
View
18.
Gasser T, Ogden R, Holzapfel G
. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 2006; 3(6):15-35.
PMC: 1618483.
DOI: 10.1098/rsif.2005.0073.
View
19.
Bilgi C, Atalik K
. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions. Biorheology. 2019; 56(1):51-71.
DOI: 10.3233/BIR-180202.
View
20.
Zambrano B, Gharahi H, Lim C, Jaberi F, Choi J, Lee W
. Association of Intraluminal Thrombus, Hemodynamic Forces, and Abdominal Aortic Aneurysm Expansion Using Longitudinal CT Images. Ann Biomed Eng. 2015; 44(5):1502-14.
PMC: 4826625.
DOI: 10.1007/s10439-015-1461-x.
View