» Articles » PMID: 23697969

Cardiovascular Magnetic Resonance Artefacts

Overview
Publisher Elsevier
Date 2013 May 24
PMID 23697969
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

The multitude of applications offered by CMR make it an increasing popular modality to study the heart and the surrounding vessels. Nevertheless the anatomical complexity of the chest, together with cardiac and respiratory motion, and the fast flowing blood, present many challenges which can possibly translate into imaging artefacts. The literature is wide in terms of papers describing specific MR artefacts in great technical detail. In this review we attempt to summarise, in a language accessible to a clinical readership, some of the most common artefacts found in CMR applications. It begins with an introduction of the most common pulse sequences, and imaging techniques, followed by a brief section on typical cardiovascular applications. This leads to the main section on common CMR artefacts with examples, a short description of the mechanisms behind them, and possible solutions.

Citing Articles

Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance.

Ma Z, Zhu Y, Zhang X, Zhao Y, Zheng W, Yuan S J Multidiscip Healthc. 2025; 18:787-799.

PMID: 39963324 PMC: 11830935. DOI: 10.2147/JMDH.S492163.


Advancing Cardiovascular Diagnostics: The Expanding Role of CMR in Heart Failure and Cardiomyopathies.

Parlati A, Nardi E, Marzano F, Madaudo C, Di Santo M, Cotticelli C J Clin Med. 2025; 14(3).

PMID: 39941536 PMC: 11818251. DOI: 10.3390/jcm14030865.


Quantitative assessment of renal steatosis in patients with type 2 diabetes mellitus using the iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence imaging: repeatability and clinical....

Liu J, Wu Y, Tian C, Zhang X, Su Z, Nie L Quant Imaging Med Surg. 2024; 14(10):7341-7352.

PMID: 39429570 PMC: 11485345. DOI: 10.21037/qims-24-330.


Image navigator-based, automated coronary magnetic resonance angiography for the detection of coronary artery stenosis.

Wood G, Hajhosseiny R, Pedersen A, Littlewood S, Hansen T, Neji R J Cardiovasc Magn Reson. 2024; 26(2):101097.

PMID: 39293786 PMC: 11647470. DOI: 10.1016/j.jocmr.2024.101097.


Comprehensive review of artifacts in cardiac MRI and their mitigation.

Rafiee M, Eyre K, Leo M, Benovoy M, Friedrich M, Chetrit M Int J Cardiovasc Imaging. 2024; 40(10):2021-2039.

PMID: 39292396 DOI: 10.1007/s10554-024-03234-4.


References
1.
Biglands J, Radjenovic A, Ridgway J . Cardiovascular magnetic resonance physics for clinicians: Part II. J Cardiovasc Magn Reson. 2012; 14:66. PMC: 3533879. DOI: 10.1186/1532-429X-14-66. View

2.
Deshpande V, Shea S, Chung Y, McCarthy R, Finn J, Li D . Breath-hold three-dimensional true-FISP imaging of coronary arteries using asymmetric sampling. J Magn Reson Imaging. 2002; 15(4):473-8. DOI: 10.1002/jmri.10087. View

3.
Scheffler K, Lehnhardt S . Principles and applications of balanced SSFP techniques. Eur Radiol. 2003; 13(11):2409-18. DOI: 10.1007/s00330-003-1957-x. View

4.
Stuber M, Botnar R, Danias P, Sodickson D, Kissinger K, Van Cauteren M . Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol. 1999; 34(2):524-31. DOI: 10.1016/s0735-1097(99)00223-5. View

5.
van Dijk P . Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr. 1984; 8(3):429-36. DOI: 10.1097/00004728-198406000-00012. View