» Articles » PMID: 23670869

Future of the Particle Replication in Nonwetting Templates (PRINT) Technology

Overview
Specialty Chemistry
Date 2013 May 15
PMID 23670869
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences.

Citing Articles

Optimization of Carrier-Based Dry Powder Inhaler Performance: A Review.

Mehta T, Najafian S, Patel K, Lacombe J, Chaudhuri B Pharmaceutics. 2025; 17(1).

PMID: 39861744 PMC: 11768101. DOI: 10.3390/pharmaceutics17010096.


Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Gomes F, Conceicao F, Moreira Teixeira L, Leijten J, Jonkheijm P Pharmaceutics. 2025; 17(1).

PMID: 39861712 PMC: 11768317. DOI: 10.3390/pharmaceutics17010064.


Challenges and opportunities of poly(amino acid) nanomedicines in cancer therapy.

Li Y, He J, Liu J, Um W, Ding J Nanomedicine (Lond). 2024; 19(29):2495-2504.

PMID: 39381990 PMC: 11520535. DOI: 10.1080/17435889.2024.2402677.


Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy.

Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X Nanomicro Lett. 2024; 17(1):30.

PMID: 39347944 PMC: 11442722. DOI: 10.1007/s40820-024-01533-y.


Air-through-precursor suction-augmented replica molding for fabrication of anisotropic microparticles in gas-impermeable molds.

Mun S, Jang W, Choi J, Lim Y, Bong K RSC Adv. 2024; 14(35):25190-25197.

PMID: 39139226 PMC: 11317880. DOI: 10.1039/d4ra04719b.


References
1.
Rolland J, van Dam R, Schorzman D, Quake S, DeSimone J . Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected]. J Am Chem Soc. 2004; 126(8):2322-3. DOI: 10.1021/ja031657y. View

2.
Gratton S, Ropp P, Pohlhaus P, Luft J, Madden V, Napier M . The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008; 105(33):11613-8. PMC: 2575324. DOI: 10.1073/pnas.0801763105. View

3.
Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W . Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008; 8(9):2906-12. DOI: 10.1021/nl801736q. View

4.
Langer R . New methods of drug delivery. Science. 1990; 249(4976):1527-33. DOI: 10.1126/science.2218494. View

5.
Ying H, Zaks T, Wang R, Irvine K, Kammula U, Marincola F . Cancer therapy using a self-replicating RNA vaccine. Nat Med. 1999; 5(7):823-7. PMC: 1976249. DOI: 10.1038/10548. View