Ravindra P, Advincula X, Schran C, Michaelides A, Kapil V
Nat Commun. 2024; 15(1):7301.
PMID: 39181894
PMC: 11344787.
DOI: 10.1038/s41467-024-51124-z.
Wu W, Mu Y
Biomicrofluidics. 2024; 18(3):031504.
PMID: 38855477
PMC: 11162290.
DOI: 10.1063/5.0190112.
Ma J, Xie Q, Zhang Y, Xiao Q, Liu X, Qiao C
Anal Bioanal Chem. 2024; 416(16):3717-3735.
PMID: 38189916
DOI: 10.1007/s00216-023-05120-9.
Nam S, Jeon D, Yoon Y, Lee G, Chang Y, Won D
Biosensors (Basel). 2023; 13(7).
PMID: 37504130
PMC: 10377501.
DOI: 10.3390/bios13070733.
Park D, Lee S, Choi D, Park J
Pharmaceutics. 2023; 15(5).
PMID: 37242764
PMC: 10223832.
DOI: 10.3390/pharmaceutics15051522.
Covalent transfer of chemical gradients onto a graphenic surface with 2D and 3D control.
Xia Y, Sevim S, Vale J, Seibel J, Rodriguez-San-Miguel D, Kim D
Nat Commun. 2022; 13(1):7006.
PMID: 36384990
PMC: 9668971.
DOI: 10.1038/s41467-022-34684-w.
Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics.
Bergmann A, Donau C, Spath F, Jahnke K, Gopfrich K, Boekhoven J
Angew Chem Int Ed Engl. 2022; 61(32):e202203928.
PMID: 35657164
PMC: 9400878.
DOI: 10.1002/anie.202203928.
Nanofibril Alignment during Assembly Revealed by an X-ray Scattering-Based Digital Twin.
Gowda V, Rosen T, Roth S, Soderberg L, Lundell F
ACS Nano. 2022; 16(2):2120-2132.
PMID: 35104107
PMC: 8867913.
DOI: 10.1021/acsnano.1c07769.
Fabrication Methods for Microfluidic Devices: An Overview.
Scott S, Ali Z
Micromachines (Basel). 2021; 12(3).
PMID: 33803689
PMC: 8002879.
DOI: 10.3390/mi12030319.
Flow-assembled chitosan membranes in microfluidics: recent advances and applications.
Ly K, Hu P, Pham L, Luo X
J Mater Chem B. 2021; 9(15):3258-3283.
PMID: 33725061
PMC: 8369861.
DOI: 10.1039/d1tb00045d.
High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology.
Yang L, Pijuan-Galito S, Rho H, Vasilevich A, Eren A, Ge L
Chem Rev. 2021; 121(8):4561-4677.
PMID: 33705116
PMC: 8154331.
DOI: 10.1021/acs.chemrev.0c00752.
Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning.
Loessberg-Zahl J, Beumer J, van den Berg A, Eijkel J, van der Meer A
Micromachines (Basel). 2020; 11(12).
PMID: 33339092
PMC: 7765499.
DOI: 10.3390/mi11121112.
Microfluidic Synthesis of Iron Oxide Nanoparticles.
James M, Revia R, Stephen Z, Zhang M
Nanomaterials (Basel). 2020; 10(11).
PMID: 33114204
PMC: 7690813.
DOI: 10.3390/nano10112113.
Engineering of tissue constructs using coaxial bioprinting.
Kjar A, McFarland B, Mecham K, Harward N, Huang Y
Bioact Mater. 2020; 6(2):460-471.
PMID: 32995673
PMC: 7490764.
DOI: 10.1016/j.bioactmat.2020.08.020.
SERS Barcode Libraries: A Microfluidic Approach.
Sevim S, Franco C, Chen X, Sorrenti A, Rodriguez-San-Miguel D, Pane S
Adv Sci (Weinh). 2020; 7(12):1903172.
PMID: 32596108
PMC: 7312449.
DOI: 10.1002/advs.201903172.
Electrocoalescence of Water-in-Oil Droplets with a Continuous Aqueous Phase: Implementation of Controlled Content Release.
Frey C, Gopfrich K, Pashapour S, Platzman I, Spatz J
ACS Omega. 2020; 5(13):7529-7536.
PMID: 32280896
PMC: 7144163.
DOI: 10.1021/acsomega.0c00344.
Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling.
Behrens M, Fuller H, Swist E, Wu J, Islam M, Long Z
Sci Rep. 2020; 10(1):1543.
PMID: 32005961
PMC: 6994627.
DOI: 10.1038/s41598-020-58246-6.
A cartridge based Point-of-Care device for complete blood count.
Abbasi U, Chowdhury P, Subramaniam S, Jain P, Muthe N, Sheikh F
Sci Rep. 2019; 9(1):18583.
PMID: 31819075
PMC: 6901560.
DOI: 10.1038/s41598-019-54006-3.
Effects of Bridge-Shaped Microchannel Geometry on the Performance of a Micro Laminar Flow Fuel Cell.
Tanveer M, Kim K
Micromachines (Basel). 2019; 10(12).
PMID: 31783613
PMC: 6953029.
DOI: 10.3390/mi10120822.
Micro-engineered liquid flow dissolves solids without dispersing them.
Holyst R, Garstecki P
Nature. 2019; 574(7777):181-182.
PMID: 31597968
DOI: 10.1038/d41586-019-02973-y.