» Articles » PMID: 23624665

Measuring Image Resolution in Optical Nanoscopy

Overview
Journal Nat Methods
Date 2013 Apr 30
PMID 23624665
Citations 296
Authors
Affiliations
Soon will be listed here.
Abstract

Resolution in optical nanoscopy (or super-resolution microscopy) depends on the localization uncertainty and density of single fluorescent labels and on the sample's spatial structure. Currently there is no integral, practical resolution measure that accounts for all factors. We introduce a measure based on Fourier ring correlation (FRC) that can be computed directly from an image. We demonstrate its validity and benefits on two-dimensional (2D) and 3D localization microscopy images of tubulin and actin filaments. Our FRC resolution method makes it possible to compare achieved resolutions in images taken with different nanoscopy methods, to optimize and rank different emitter localization and labeling strategies, to define a stopping criterion for data acquisition, to describe image anisotropy and heterogeneity, and even to estimate the average number of localizations per emitter. Our findings challenge the current focus on obtaining the best localization precision, showing instead how the best image resolution can be achieved as fast as possible.

Citing Articles

DeepCristae, a CNN for the restoration of mitochondria cristae in live microscopy images.

Papereux S, Leconte L, Valades-Cruz C, Liu T, Dumont J, Chen Z Commun Biol. 2025; 8(1):320.

PMID: 40011620 PMC: 11865493. DOI: 10.1038/s42003-025-07684-x.


Positive-Type Reversibly Photoswitching Red Fluorescent Protein for Dual-Color Superresolution Imaging with Single Light Exposure for Off-Switching.

Ozaki-Noma R, Wazawa T, Kakizuka T, Shidara H, Takemoto K, Nagai T ACS Nano. 2025; 19(7):7188-7201.

PMID: 39937184 PMC: 11867007. DOI: 10.1021/acsnano.4c16847.


Analysis of immune synapses by τau-STED imaging and 3D-quantitative colocalization of lytic granule markers.

Scharrig E, Sanmillan M, Giraudo C Methods Cell Biol. 2025; 193:1-13.

PMID: 39919838 PMC: 11806212. DOI: 10.1016/bs.mcb.2023.01.018.


Creating coveted bioluminescence colors for simultaneous multi-color bioimaging.

Hattori M, Wazawa T, Orioka M, Hiruta Y, Nagai T Sci Adv. 2025; 11(4):eadp4750.

PMID: 39841832 PMC: 11753369. DOI: 10.1126/sciadv.adp4750.


Single Extracellular VEsicle Nanoscopy-Universal Protocol (SEVEN-UP): Accessible Imaging Platform for Quantitative Characterization of Single Extracellular Vesicles.

Saftics A, Purnell B, Beres B, Thompson S, Jiang N, Ghaeli I Anal Chem. 2025; 97(3):1654-1664.

PMID: 39804668 PMC: 11780574. DOI: 10.1021/acs.analchem.4c04614.


References
1.
Bates M, Dempsey G, Chen K, Zhuang X . Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem. 2012; 13(1):99-107. PMC: 3353744. DOI: 10.1002/cphc.201100735. View

2.
Fitzgerald J, Lu J, Schnitzer M . Estimation theoretic measure of resolution for stochastic localization microscopy. Phys Rev Lett. 2012; 109(4):048102. PMC: 3478896. DOI: 10.1103/PhysRevLett.109.048102. View

3.
Hell S, Wichmann J . Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 2009; 19(11):780-2. DOI: 10.1364/ol.19.000780. View

4.
Bottcher B, Wynne S, Crowther R . Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature. 1997; 386(6620):88-91. DOI: 10.1038/386088a0. View

5.
Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle M, van de Linde S . rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods. 2012; 9(11):1040-1. DOI: 10.1038/nmeth.2224. View