» Articles » PMID: 39375574

POLCAM: Instant Molecular Orientation Microscopy for the Life Sciences

Abstract

Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.

Citing Articles

Single-molecule orientation-localization microscopy: Applications and approaches.

Zhang O, Lew M Q Rev Biophys. 2024; 57:e17.

PMID: 39710866 PMC: 11771422. DOI: 10.1017/S0033583524000167.


RASP: Optimal Single Puncta Detection in Complex Cellular Backgrounds.

Fu B, Brock E, Andrews R, Breiter J, Tian R, Toomey C J Phys Chem B. 2024; 128(15):3585-3597.

PMID: 38593280 PMC: 11033865. DOI: 10.1021/acs.jpcb.4c00174.


Supramolecular polymers form tactoids through liquid-liquid phase separation.

Fu H, Huang J, van der Tol J, Su L, Wang Y, Dey S Nature. 2024; 626(8001):1011-1018.

PMID: 38418913 PMC: 10901743. DOI: 10.1038/s41586-024-07034-7.

References
1.
Betzig E, Patterson G, Sougrat R, Lindwasser O, Olenych S, Bonifacino J . Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006; 313(5793):1642-5. DOI: 10.1126/science.1127344. View

2.
Rust M, Bates M, Zhuang X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006; 3(10):793-5. PMC: 2700296. DOI: 10.1038/nmeth929. View

3.
Hess S, Girirajan T, Mason M . Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006; 91(11):4258-72. PMC: 1635685. DOI: 10.1529/biophysj.106.091116. View

4.
Sharonov A, Hochstrasser R . Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A. 2006; 103(50):18911-6. PMC: 1748151. DOI: 10.1073/pnas.0609643104. View

5.
Xu K, Zhong G, Zhuang X . Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2012; 339(6118):452-6. PMC: 3815867. DOI: 10.1126/science.1232251. View