Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W
Polymers (Basel). 2022; 14(9).
PMID: 35566977
PMC: 9100146.
DOI: 10.3390/polym14091806.
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R
Int J Mol Sci. 2022; 23(9).
PMID: 35563607
PMC: 9105846.
DOI: 10.3390/ijms23095216.
Ye T, Huang K, Ko T, Wu S
Acta Crystallogr D Struct Biol. 2022; 78(Pt 5):633-646.
PMID: 35503211
PMC: 9063844.
DOI: 10.1107/S2059798322002601.
Zhang R, Cao C, Bi J, Li Y
Appl Microbiol Biotechnol. 2021; 106(1):1-24.
PMID: 34889986
DOI: 10.1007/s00253-021-11723-y.
Zajki-Zechmeister K, Kaira G, Eibinger M, Seelich K, Nidetzky B
ACS Catal. 2021; 11(21):13530-13542.
PMID: 34777910
PMC: 8576811.
DOI: 10.1021/acscatal.1c03465.
Glycosylated cyclophellitol-derived activity-based probes and inhibitors for cellulases.
de Boer C, McGregor N, Peterse E, Schroder S, Florea B, Jiang J
RSC Chem Biol. 2021; 1(3):148-155.
PMID: 34458755
PMC: 8341922.
DOI: 10.1039/d0cb00045k.
Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials.
Tardy B, Mattos B, Otoni C, Beaumont M, Majoinen J, Kamarainen T
Chem Rev. 2021; 121(22):14088-14188.
PMID: 34415732
PMC: 8630709.
DOI: 10.1021/acs.chemrev.0c01333.
Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III.
Chundawat S, Nemmaru B, Hackl M, Brady S, Hilton M, Johnson M
J Biol Chem. 2021; 296:100431.
PMID: 33610545
PMC: 8010709.
DOI: 10.1016/j.jbc.2021.100431.
Elucidation of Changes in Cellulose Ultrastructure and Accessibility in Hardwood Fractionation Processes with Carbohydrate Binding Modules.
Novy V, Nielsen F, Olsson J, Aissa K, Saddler J, Wallberg O
ACS Sustain Chem Eng. 2020; 8(17):6767-6776.
PMID: 32391215
PMC: 7202243.
DOI: 10.1021/acssuschemeng.9b07589.
Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules.
Novy V, Aissa K, Nielsen F, Straus S, Ciesielski P, Hunt C
Proc Natl Acad Sci U S A. 2019; 116(45):22545-22551.
PMID: 31636211
PMC: 6842628.
DOI: 10.1073/pnas.1912354116.
Enzymatic hydrolysis of cellulosic materials using synthetic mixtures of purified cellulases bioengineered at -glycosylation sites.
Dotsenko A, Gusakov A, Rozhkova A, Sinitsyna O, Shashkov I, Sinitsyn A
3 Biotech. 2018; 8(9):396.
PMID: 30221109
PMC: 6125252.
DOI: 10.1007/s13205-018-1419-4.
Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization.
Hyeon J, Shin S, Han S
Biotechnol J. 2016; 11(11):1386-1396.
PMID: 27783468
PMC: 5132044.
DOI: 10.1002/biot.201600039.
Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.
Kont R, Kari J, Borch K, Westh P, Valjamae P
J Biol Chem. 2016; 291(50):26013-26023.
PMID: 27780868
PMC: 5207072.
DOI: 10.1074/jbc.M116.756007.
Binding of cellulose binding modules reveal differences between cellulose substrates.
Arola S, Linder M
Sci Rep. 2016; 6:35358.
PMID: 27748440
PMC: 5066208.
DOI: 10.1038/srep35358.
Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.
Eibinger M, Zahel T, Ganner T, Plank H, Nidetzky B
Biotechnol Biofuels. 2016; 9:56.
PMID: 26962329
PMC: 4784381.
DOI: 10.1186/s13068-016-0463-8.
The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase- and Swollenin-induced deconstruction of lignocellulosic substrates.
Gourlay K, Hu J, Arantes V, Penttila M, Saddler J
J Biol Chem. 2014; 290(5):2938-45.
PMID: 25527502
PMC: 4317003.
DOI: 10.1074/jbc.M114.627604.
Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D
J Biol Chem. 2014; 289(52):35929-38.
PMID: 25361767
PMC: 4276861.
DOI: 10.1074/jbc.M114.602227.
Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity.
Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P
J Biol Chem. 2014; 289(47):32459-68.
PMID: 25271162
PMC: 4239601.
DOI: 10.1074/jbc.M114.604264.
A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca.
Kostylev M, Wilson D
Appl Environ Microbiol. 2013; 80(1):339-44.
PMID: 24162578
PMC: 3910994.
DOI: 10.1128/AEM.02706-13.
Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.
Whitney J, Chou S, Russell A, Biboy J, Gardiner T, Ferrin M
J Biol Chem. 2013; 288(37):26616-24.
PMID: 23878199
PMC: 3772208.
DOI: 10.1074/jbc.M113.488320.