» Articles » PMID: 21876164

Insights into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components

Abstract

The enzymatic degradation of recalcitrant plant biomass is one of the key industrial challenges of the 21st century. Accordingly, there is a continuing drive to discover new routes to promote polysaccharide degradation. Perhaps the most promising approach involves the application of "cellulase-enhancing factors," such as those from the glycoside hydrolase (CAZy) GH61 family. Here we show that GH61 enzymes are a unique family of copper-dependent oxidases. We demonstrate that copper is needed for GH61 maximal activity and that the formation of cellodextrin and oxidized cellodextrin products by GH61 is enhanced in the presence of small molecule redox-active cofactors such as ascorbate and gallate. By using electron paramagnetic resonance spectroscopy and single-crystal X-ray diffraction, the active site of GH61 is revealed to contain a type II copper and, uniquely, a methylated histidine in the copper's coordination sphere, thus providing an innovative paradigm in bioinorganic enzymatic catalysis.

Citing Articles

Pinpointing Cu-Coordination Motifs in Bio-Inspired MOFs by Combining DFT-Assisted XAS Analysis and Multivariate Curve Resolution.

Garetto B, Cao N, Finelli V, Aunan E, Signorile M, Olsbye U J Phys Chem C Nanomater Interfaces. 2025; 129(7):3570-3582.

PMID: 40008198 PMC: 11848919. DOI: 10.1021/acs.jpcc.4c08029.


Functional characterization of two AA10 lytic polysaccharide monooxygenases from Cellulomonas gelida.

Turunen R, Tuveng T, Forsberg Z, Schiml V, Eijsink V, Arntzen M Protein Sci. 2025; 34(3):e70060.

PMID: 39969139 PMC: 11837042. DOI: 10.1002/pro.70060.


A metagenomic 'dark matter' enzyme catalyses oxidative cellulose conversion.

Santos C, Morais M, Mandelli F, Lima E, Miyamoto R, Higasi P Nature. 2025; .

PMID: 39939775 DOI: 10.1038/s41586-024-08553-z.


Theoretical study of the formation of HO by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant.

Wang Z, Fu X, Diao W, Wu Y, Rovira C, Wang B Chem Sci. 2025; 16(7):3173-3186.

PMID: 39829981 PMC: 11740911. DOI: 10.1039/d4sc06906d.


Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Sagar K, Kim M, Wu T, Zhang S, Bominaar E, Siegler M Eur J Inorg Chem. 2025; 27(15).

PMID: 39803332 PMC: 11719791. DOI: 10.1002/ejic.202300774.


References
1.
Kuzuya M, Yamada K, Hayashi T, Funaki C, Naito M, Asai K . Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein. Biochim Biophys Acta. 1992; 1123(3):334-41. DOI: 10.1016/0005-2760(92)90015-n. View

2.
Dodson E, Woolfson M . ACORN2: new developments of the ACORN concept. Acta Crystallogr D Biol Crystallogr. 2009; 65(Pt 9):881-91. DOI: 10.1107/S0907444909016515. View

3.
Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P . Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2288-94. DOI: 10.1107/S0907444904023716. View

4.
Arantes V, Milagres A, Filley T, Goodell B . Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol. 2010; 38(4):541-55. DOI: 10.1007/s10295-010-0798-2. View

5.
Balasubramanian R, Smith S, Rawat S, Yatsunyk L, Stemmler T, Rosenzweig A . Oxidation of methane by a biological dicopper centre. Nature. 2010; 465(7294):115-9. PMC: 2999467. DOI: 10.1038/nature08992. View