» Articles » PMID: 23532056

Imaging the Action of Antimicrobial Peptides on Living Bacterial Cells

Overview
Journal Sci Rep
Specialty Science
Date 2013 Mar 28
PMID 23532056
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems.

Citing Articles

Antimicrobial cyclic peptides effectively inhibit multiple forms of Borrelia and cross the blood-brain barrier model.

Mochnacova E, Bhide K, Kuckova K, Jozefiakova J, Malarik T, Bhide M Sci Rep. 2025; 15(1):6147.

PMID: 39979461 PMC: 11842550. DOI: 10.1038/s41598-025-90605-z.


Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review.

Shariati A, Kashi M, Chegini Z, Hosseini S Front Pharmacol. 2024; 15:1467086.

PMID: 39355778 PMC: 11442292. DOI: 10.3389/fphar.2024.1467086.


Melittin can permeabilize membranes via large transient pores.

Ulmschneider J, Ulmschneider M Nat Commun. 2024; 15(1):7281.

PMID: 39179607 PMC: 11343860. DOI: 10.1038/s41467-024-51691-1.


An Update on the Therapeutic Potential of Antimicrobial Peptides against Infections.

Rangel K, Lechuga G, Provance Jr D, Morel C, De Simone S Pharmaceuticals (Basel). 2023; 16(9).

PMID: 37765087 PMC: 10537560. DOI: 10.3390/ph16091281.


Lipid-Functionalized Single-Walled Carbon Nanotubes as Probes for Screening Cell Wall Disruptors.

Kallmyer N, Agarwal S, Eeg D, Khor R, Roby N, Vela Ramirez A ACS Appl Mater Interfaces. 2023; 15(38):44621-44630.

PMID: 37721709 PMC: 11806933. DOI: 10.1021/acsami.3c06592.


References
1.
Park S, Kim J, Shin S, Jeong C, Kim M, Shin S . Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun. 2006; 343(1):222-8. DOI: 10.1016/j.bbrc.2006.02.090. View

2.
Huang H . Action of antimicrobial peptides: two-state model. Biochemistry. 2000; 39(29):8347-52. DOI: 10.1021/bi000946l. View

3.
Hancock R, LEHRER R . Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998; 16(2):82-8. DOI: 10.1016/s0167-7799(97)01156-6. View

4.
Dempsey C . The actions of melittin on membranes. Biochim Biophys Acta. 1990; 1031(2):143-61. DOI: 10.1016/0304-4157(90)90006-x. View

5.
Rapson A, Hossain M, Wade J, Nice E, Smith T, Clayton A . Structural dynamics of a lytic peptide interacting with a supported lipid bilayer. Biophys J. 2011; 100(5):1353-61. PMC: 3043223. DOI: 10.1016/j.bpj.2011.01.026. View